BOSTON UNIVERSITY
COLLEGE OF ENGINEERING

DISSERTATION

PERSONAL COMMUNICATIONS SERVICES (PCS) NETWORKS:
MODELING AND PERFORMANCE ANALYSIS

by

YUGUANG FANG

M.S., Qufu Normal University, PRC, 1987
Ph.D, Case Western Reserve University, 1994

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
1997



© Copyright by
YUGUANG FANG
1997



\

[~ AANLCL

nas G. Kincaid, Professor and Associate Dean

:ele‘détﬁmunications

C43, (."




Dedicated
to
My Beloved Parents
and

My Beloved Parent-in-Laws



ACKNOWLEDGMENT

I am greatly indebted to my advisors, Thomas G. Kincaid and Imrich Chlamtac
for their great inspiration, excellent guidance, deep thoughts and friendship during

the course of my graduate studies.

Thanks are due to my dissertation committee: Professor Lev Levitin and Pro-

fessor David Castanon for their helpful discussions.

I am grateful to Dr. Imrich Chlamtac, Professor and Distinguished Chair of
Telecommunications at the University of Texas at Dallas, and Dr. Yi-Bing “Jason”
Lin, Professor at National Chiao Tung University, Taiwan, who were willing to provide

the research topic and unselfishly contribute their insightful ideas to the research.

Special thanks are due to the Kincaid family: Betsy and Tom, who not only
constantly encouraged me in many ways, but also shared their view of life with me
and my family. It is a great pleasure to know them. Special thanks are also extended

to the Cotter family: Evelyn and Sarah, for their friendship.

I also express my appreciation to all the faculty, staff and my fellow students in
the Department of Electrical and Computer Engineering. In particular, I extend my
thanks to Ms. Loraine Walsh for her constant help, my office mates Mr. Chester
Ruszczyk and Ms. Hongbiao Zhang for their helpful discussions, and my colleagues
Ms. Tong Liu, Mr. Jason Redi and Ms. Chiara Petrioli in the Advanced Communi-

cations Laboratory for their help in many ways.

It is always an inspiration whenever I think of my high school teachers Mr. Zhao-
xiang Jiang and Mr. Wen-Heng Xu, who played such important roles in my early

education.

Finally, I would like to thank my dear wife Jennifer Yih-Ling Lu and my son An-
drew Ray Fang for their love, patience, constant encouragement and understanding,

“Guys, this is for you!”



PERSONAL COMMUNICATIONS SERVICES (PCS) NETWORKS:
MODELING AND PERFORMANCE ANALYSIS
(Order No. )
YUGUANG FANG
Boston University, College of Engineering, 1997

Advisor: Thomas G. Kincaid, Professor,
Electrical and Computer Engineering

Co-advisor: Imrich Chlamtac, Professor,
The University of Texas at Dallas

Abstract

In the classical wireline and cellular networks, it is often assumed that the call
holding times, cell residence times and channel occupancy times are exponentially
distributed. However, as the cell sizes in PCS networks become smaller and the
services provided over such networks become more integrated, the call holding times
and cell residence times are no longer exponentially distributed. Hence the analytical
results of classical traffic theory are not applicable to PCS network performance

evaluation.

In this research, we study the following performance metrics for PCS networks
under general distributions of call holding times and cell residence times: cell traffic,
channel occupancy times, handoff rate, call dropping probability (call incompletion
probability), call completion probability, and effective call holding times. We develop
new analytical approaches to tackle this general model. We give analytical character-
ization of cell traffic and obtain necessary and sufficient conditions for channel occu-
pancy times to be exponentially distributed and for the cell traffic to be Poissonian.
Analytical results are obtained for handoff rate, call dropping probability and call
completion probability, distributions of channel occupancy times, the distributions
of effective call holding times, and the expected effective call holding times for a

complete call and for an incomplete call. We show how the expected effective call



holding times for a complete call and for an incomplete call can be used to develop new
billing rating plans for PCS networks. Three strategies of billing record updating for
billing system monitoring and fraud detection are proposed and analyzed. Our results
indicate that our new approaches can tackle situations that the classical traffic theory
can not handle analytically. The new analytical tools we develop in this research open

a new avenue in modeling and performance analysis for the emerging PCS networks.
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Chapter 1

INTRODUCTION

Wireless Personal Communications has captured the intensive attention of both academia
and industry, and the Personal Communications Services (PCS) networks is an in-
tegral part of this area ([6]). PCS networks allow users communicate as they move
or roam across different service providers’ domains and to provide seamless com-
munications services including voice, data and multimedia at any time and at any
place. These networks allow the use of small low-powered lightweight portables with
radio interface to base stations in microcells of typically less than 1 km diameter
([34, 19, 25, 54]). PCS networks is one of the fastest growing and largest revenue-
generating areas in telecommunication industry. Intensive research, development and
standardization activity on a range of related aspects are being carried out at both
the global and regional levels. The design and analysis of such PCS networks are
more complex than the classical wired networks such as POTS (Plain Old Telephone
Systems). Analytical results in classical traffic theory are not applicable because of
the mobility of users and the complex traffic of new emerging integrated services.
Hence, traffic engineering for networks supporting mobile and personal communi-
cations services has reached a new dimension in teletraffic theory and needs to be

carefully investigated ([33]).



In this research, we focus on the modeling and performance analysis of PCS
networks. Before we discuss our main topics, we give a brief overview of wireless

personal communications on which the PCS networks are based.

1.1 A Brief History

The first wireless telephone service, which was used to interconnect mobile users
(typically in automobiles) to the public wired telephone networks, was introduced
in the United States in 1946 by AT&T. Frequency modulation (FM) transmission
was used between the fixed stations and mobile users. The quality of service was
not good due to transmission noise and multipath fading. However, the demand for
mobile services was on the rise, hence these systems were not efficient anymore. In
the mid-1960s, the Bell System introduced the Improved Mobile Telephone Services

(IMTS), which markedly improved the systems.

In the late 1960s and early 1970s, the cellular concept was conceived and was
then used to improve the system capacity and frequency efficiency. The idea behind
“cellular” is to divide the service area into many small regions (cells) according to
the transmission power constraints and availability of spectrum. In these cellular
networks, the frequency used in one cell can be reused in another cell which is located

far enough to avoid co-channel interference.

The late 1970’s and early 1980’s saw the popularity of cellular services increase.
In North America, the AMPS (Advanced Mobile Phone Systems) and the narrow-
band AMPS were developed. Similar systems were also developed in other countries:
TACS (Total Access Communications Systems) in the United Kingdom, NMT (Nordic
Mobile Telephone) in Scandinavia, C450 in West Germany.

With the development of digital technologies and microprocessing computing

power in the late 1980’s and up to today, enormous interest emerged in digital cellular



systems, which promised higher capacity and higher quality of services at reduced
cost. In these systems, all signals, including voice and control signals, are digitized for
transmission. GSM (Global Systems for Mobile Communications) was developed in
Europe, I1S-54/1S-95 were developed in the United States and JDC (Japanese Digital
Cellular) was developed in Japan. In 1993, a digital system was placed in service in
some parts of the United States. GSM became the standard in Europe and some other
countries, while the United States is still making a compromise between the analog

cellular systems (AMPS/N-AMPS) and the digital cellular systems (IS-54/1S-95).

As the data services such as Internet service became much more in demand,
the integration of various services such as data, voice and multimedia is attracting
tremendous interest. In early 1990, personal communications services (PCS) was
conceived and investigation began. PCS is likely to explode worldwide since the

market demand is still rising.

Historically, wireless personal communications has undertaken three stages or
generations, which can be shown in Figure 1.1 Analog cellular systems belong to
the first generation; the major service provided is voice. Second generation cellular
systems use digital technologies to provide better quality of service including voice
and limited data with higher system capacity and lower cost. The third generation
is targeted to the future where integrated services can be supported; PCS networks
belong to this category. Most of the services supported on the third generation cellular
systems are wireless extensions of the Integrated Services Digital Network (ISDN).
WACS (Wireless Access Communications System) and PACS (Personal Access Com-

munications System) are two major standard systems in PCS networks.

1.2 What is PCS?

As Cox ([6]) pointed out, there is no clear definition for PCS. He said that

“it is not one technology, not one system, and not one service, but encompasses
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many technologies, systems and services optimized for different applications”. It also
has different names at different places with different research groups, such as PCN
(Personal Communications Network), UMTS (Universal Mobile Telecommunication
System) and FPLMTS (Future Public Land Mobile Telecommunication Systems).
However, non-rigorous descriptive definitions can be used to understand the essence
of the PCS systems or networks. PCS is often distinguished from cellular telephony by
the promise to provide any type of service to anyone, anywhere and at any time with
ubiquitous coverage. It developed from the classical cellular telephone systems by the
following two approaches: either increasing the cell size to increase the capacity and
widespread coverage (like cordless phones or satellite mobile systems) or decreasing
the cell size (microcells) and power levels (like vehicular cellular radios and hand-held
portables). Both approaches appear to be aimed toward a more widespread conve-
nient form of wireless personal communications. It has been recognized ([53]) that
PCS standards fall naturally into two categories: “high tier”, supporting macrocells
and high-speed mobility; and “low tier”, optimized for low power and low complexity.
The requirements for PCS networks (as in UMTS from RACE projects in Europe

([57]) or in PACS from Bellcore) can be summarized as follows:

e Spectrally efficient communication system by which every user can exchange

information with anyone, anywhere and at any time;
e High capacity to support high density service usage;
e Supports wide a variety of services;

e Indoor coverage (cordless telephone, wireless local area networks (WLAN))
and/or outdoor coverage (cellular radios, WLAN, wide area wireless data, radio

paging, extended cordless telephone, satellite-based wireless);
e Light, pocket-sized, low cost handset/portable with low power consumption;

e High service quality;



e Access to different services (two-way voice, data, messaging and video) possible

from single terminal type;
e Communication security (encryption);

e Fair charging (flat rate planning).

The most important thing in PCS networks is that they will support three types of
mobility: ([21])

e personal mobility—enabling relocatable association between user subscription

and actual terminal used;

e terminal mobility—maintaining an established connection under both static and

dynamic conditions, that is, with both fixed and mobile terminal;

e service mobility—enabling management of user service profiles.

Thus, a user on the move can, if he/she likes, always communicate with anybody
or any type of services anywhere at any place. The proposed services for the PCS
networks ([19]) include telephony, teleconference, voice mail, program sound, video
telephony, video conference, remote terminal, user profile editing, telefax (Group 4),
voiceband data, database access, message broadcast, unrestricted digital information,
navigation, location and others which remain to be defined. Service providers will
require higher-complexity protocols in the physical link layer because of the unpre-
dictable nature of the radio propagation environment and the inherent mobility in a
PCS network. PCS networks will concentrate on the service quality, system capacity,

and personal, terminal and service mobility issues.



1.3 Performance Issues of PCS Networks

As in classical cellular telephony, the service area in a PCS network is also
divided into cells (cells/microcells/picocells) according to the carrier-to-interference
(C/1) requirements, geography and the users’ terminal density. Each cell is equipped
with a base station and with a number of radio channels assigned according to the
available frequency spectrum and frequency reuse pattern. Any portable residing in
a cell can communicate through a radio link with the base station located in the
cell, which communicates with the Mobile Switching Center (MSC), which is in turn
connected to the Public Switching Telephone Networks (PSTN). When a user initiates
or receives a call, he/she may roam around in the coverage of the PCS network. If the
portable user moves from one cell to another, and the call from/to the portable has
not finished, the network has to handoff the call from one cell to another at the cell
boundary crossing without user’s awareness of handoff and without much degradation
of the service quality. Because the number of channels available in a cell is limited,
when a portable makes a call, the new originating call may be blocked. Similarly,
when the unfinished call moves from one cell to another, the handoff may not be

successful, hence the handoff call is forced to terminate.

The major difference between the classical POTS networks and PCS networks is
the mobility of users and the related call handling procedure. In POTS, although
users may experience busy tones when a call is made, when connected the call
will continue without any interruptions until finished. However, in PCS networks
(including classical cellular networks), users not only experience busy tones, but also
face the forced termination during the handoff process. In particular, in order to
increase the system capacity, the cell sizes of PCS networks are reduced, and handoff
effects increase. Since users are much more sensitive to handoff blocking than to
new call blocking, the PCS service providers have to pay much more attention to the

handoff process in the cell channel allocation ([11, 29, 56]). Hence the analysis for
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Figure 1.2: New and handoff traffic processes in a typical cell

PCS networks become more complicated. Figure 1.2 shows the traffic processes in a
typical cell. New calls and handoff calls arrive at the cell. Based on the availability of
channels in the cell, new calls can be blocked or put through and arriving handoff calls
can be dropped out or be handed off successfully to the cell. The departed calls from
the cell either complete or are handed off to other cells. The following performance

metrics may be used to evaluate the PCS network performance:

e Call blocking probability—the probability that a new call is blocked.
e Handoff blocking probability—the probability that a handoff call is blocked.
e Handoff Rate—The average number of handoffs per call.

e Call dropping probability—the probability that a call terminates due to a handoff
failure. This probability can be easily computed from the call completion

probability.

e (Call completion probability—the probability that a call completes without any
blocking and handoff failures.



e Fffective call holding time for a complete call—the time duration from the call
initiation to the finish without any blocking, i.e., the time the complete call

spends in the PCS networks.

e FEffective call holding time for an incomplete call—the time duration from the
call initiation to the instant the call is forced to terminate, i.e., the time the

incomplete call spends in the PCS networks.

e Channel occupancy time for a new call—the time a new call occupies a channel

in a cell.

e Channel occupancy time for a handoff call—the time a handoff call occupies a

channel in a cell.

e Channel occupancy time—the time any call (either a new call or a handoff call)

occupies a channel in a cell.

e Handoff call traffic rate—the handoff call arrival rate to a cell.

Call blocking probability and handoff blocking probability are two measures which are
commonly used for the PCS network design and performance evaluation. They are
usually the design parameters specified in practical design. Everitt ([11]) emphasized
the call dropping probability from the perception of users. This research focus on the
call dropping probability (equivalently, the call completion probability) and the rest

of the above important quantities under very general assumptions.

1.4 Literature Survey

Intensive research activity for the call blocking probability and handoff blocking
probability is reported in the current literature. Hong and Rappaport ([24]) system-

atically studied the traffic model and performance for cellular systems and obtained



some results for call blocking probabilities for new calls and handoff calls using
M/M/m queueing system theory. Xie and Kuek ([69]) presented an approximate
analysis for Hong-Rappaport model and made some very interesting observations.
Rappaport and his coworkers ([59, 60, 58, 61]) also considered the performance of
cellular systems with different services and mixed platforms, and the analytical tools
may be generalized to the performance of PCS networks with more general traffic
conditions. Tekinary and Jabbari ([66]) proposed an analytic model for handoff
prioritization scheme, and the M/M/c/c analysis was carried out. Lin et al ([40])
proposed a more general model for channel assignment strategies for PCS network
handoffs and obtained some interesting results when some of the traffic conditions
are relaxed. Foschini et al ([18]) presented an approximation using a simple ad hoc
Erlang-B formula based on an equivalent traffic load. Del Re et al ([8]) proposed a
new dynamic channel allocation technique, and using the Erlang-B formula they found
an analytical expression for the blocking probability. Yoon and Un ([71]) compared
three call handling schemes and their performances, assuming the arrival traffic is
Poissonian and the departure process is Poissonian. Yum and Yeung ([72]) studied
the cellular systems with directed retry and the performance showed improvement.
Nanda ([50]) developed some experimental models for teletraffic and obtained a result
for handoff rate. Pollini ([56]) summarized most handoff strategies for PCS networks
and pointed out the future research trends in that area. Katzela and Naghshineh

([29]) presented an excellent survey of channel allocations for PCS networks.

However, for most of models and systems described in the literature cited above,
it is assumed that the cell traffic (the merged traffic from the new calls and handoff
calls) is Poissonian and channel occupancy time is exponentially distributed, thus
the blocking probabilities can be obtained by the famous Erlang-B formula or the
open queueing network theory. Under the same assumption, the handoff probability
and call dropping probability can be derived ([34, 50]). Although these assumptions

may be valid for certain simple PCS networks, they may not be true for most PCS

10



networks which support the new emerging integrated services. Guerin ([20]) observed
that the channel occupancy time may not be exponentially distributed. Bolotin ([4])
found that even the call holding times for certain networks such as the Common-
Channel Signaling (CCS) networks are not exponentially distributed, hence they will

not be exponentially distributed for PCS networks which consist of various services.

In order to analyze PCS networks, we propose the following two-level model.
The first level of the model uses the number of radio channels in cells as an input
parameter to determine the new call blocking probability and the handoff call blocking
probability. The second level of the model uses the new call blocking probability and
handoff call blocking probability as input parameters to study the call completion
probability and the effective call holding times.

In this research, we mainly focus on the second level of the model. The impor-
tance of the second level is that the PCS service providers may use the expected call
holding times for both complete calls and incomplete calls to design appropriate flat
rate billing programs. It is not fair to charge the same rate for the customer who is
forced to terminate as for those who complete their calls. Terminated calls should be
charged a lower rate. However, it is not fair either for the service providers to use
this lower rate for the incomplete calls which have already used the service for a long
time. Therefore, this research will be very significant for both PCS service providers

and customers.

1.5 PCS Network Modeling and Assumptions

A good model in mathematical modeling should satisfy two criteria: it should
be general enough to capture the essence of the problem, while at the same time it
is analytically tractable. In this section, we present a model for the PCS networks
and a set of reasonable assumptions which enable us to give analytical results for the

performance of PCS networks. In this section, we also give definitions used in the

11



subsequent development.

When a mobile user attempts to make a call connection to a PCS network,
depending on the channel availability, the call may be blocked or connected. The
duration of the requested call connection is referred to as the call holding time (for
example, in wired telephone networks call holding time is the time from the start of
the successful connection to the finish of the call). When the call is connected, the
call may be complete after some successful handoffs or may be incomplete because
of a failed handoff. The probability that a call is complete after the call is connected
is called the call completion probability, the probability that a call is not blocked but
forced to terminate after a few successful handoffs is called call dropping probability.
It is directly obtained from the call completion probability (e.g., one minus the
call blocking probability and minus the call completion probability). We therefore
concentrate on the call completion probability in this research. We shall call the
duration of an actual call connection for an incomplete call the effective call holding
time of an incomplete call, while the duration of a call connection of a complete call
is called the effective call holding time of a complete call. In the wired POTS, these
three quantities are the same because there is no failure during a call. However, for
PCS networks, these quantities are different and useful for the network performance
and billing rating programs. The time that a mobile user spends in a cell is called
the cell residence time. The cell residence times 5,13, -+ are shown in Figure 1.3.
The effective call holding times and the call completion probability depend on the
call holding times, the cell residence times, and the PCS network (new or handoff)
call blocking probabilities.

Two main approaches can be identified in the literature for modeling call holding
times and cell residence times. One uses the geographic cell (hexagonal) shapes and
distribution assumption of the mobiles’ speeds, distances and directions to determine
the distribution of cell residence times and call holding times ([24, 50, 68]). This

approach faces a difficulty when applied to existing cellular systems since in reality

12
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Figure 1.3: The cell residence times ts,t3, - - -

cell shapes are often highly irregular, the speeds of mobiles and distances covered
by the mobiles are highly random (considering a highly populated area), and the
directions of mobiles may vary in zigzag fashion. It becomes, therefore, very hard to

characterize analytically the cell residence times using these modeling assumptions.

The second approach treats the cell residence times and call holding times directly
using information measured from the PCS field trials. Distribution models, such as
exponential distribution and Gamma distribution, have been used to approximate the
distributions of call holding times and cell residence times using data from field tests
(see [40, 43] and references therein). It is well-known that the exponential distribution
can be used for a one parameter approximation of the measured data, while Gamma
distribution can be used for secondary approximation ([27]). It is also known ([30])
that mixed Erlang distribution (hyper-Erlang distribution in this research) can be
used to approximate any specific non-lattice distributions. Hence the application of

these distributions to model the call holding times and cell residence times in the

13



emerging PCS networks appears to be more practical when field data are available.

We will take the second approach in this research.

In the traditional wired-line telephone models, the call holding times are usually
assumed to be exponentially distributed, which has been shown to be a reasonable
approximation for measured data. This assumption has been used in the past for PCS
network analysis for the sake of tractability ([20, 24, 68, 72]). When the call holding
times are exponentially distributed, Lin et al ([40, 43]), Rappaport et al ([24, 60, 61]),
Yum and Yeung ([72]) and Tekinary and Jabbari ([66]) studied the performance of
channel assignment strategies and obtained some analytical results for the forced

termination probability and the new call blocking probability.

As emerging PCS networks are poised to provide various new integrated services
and are expected to attract more users while changing the users’ calling habits, the
call holding times are not be expected to have the exponential (Erlang) distribution,
as already observed by Guerin ([20]) and Bolotin ([4]). More general distributions for
call holding times are needed to model the emerging PCS networks. Here we propose
a general model which assumes that the cell residence times have general non-lattice
distribution, and the call holding times are distributed with general distributions such
as Gamma, hyper-exponential and hyper-Erlang distributions. While the advantages
of such distributions are clear in that they reflect the emerging services, applying

these distributions to the model is a non-trivial task.

The following general assumptions will be used throughout this research:

e The mobile users are uniformly scattered in the whole service area of the PCS

network, i.e., the PCS network is homogeneous;
e The new call arrivals forms a Poisson process;

e The cell residence times are independent, identically distributed (iid) with non-

lattice distribution;
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e The call holding times are independent, identically distributed (iid) with non-

lattice distribution.

These assumptions are general enough to capture some of the essence of PCS
network traffic while enable us to obtain analytical results for the performance of
PCS networks. As a final note, we discuss the residual life (r;) of call holding time
in the originating cell. Throughout the dissertation, we use the assumption that the
Residual Life Theorem is valid for our PCS models. It can observed that when the

residual life has general distribution, all results can be easily modified.

1.6 Organization of This Dissertation

This dissertation is organized as follows. In the next chapter, we study the
cell traffic and handoff rate, we present necessary and sufficient conditions for two
commonly used assumptions in the literature to be valid, which clarify under what
conditions the Erlang-B formula or the open queueing network theorem for computing
blocking probabilities can be used. We also give analytical expressions for both
channel occupancy times and handoff rate. In Chapter 3, we demonstrate how to
analytically compute the call completion probability and the expected effective call
holding times under fairly general assumptions on the call holding times (exponen-
tially or Erlang distributed) and cell residence times. Chapter 4 continues the research
on Chapter 3; we generalize the analytical results to deal with the cases where the call
holding times are distributed with more general distributions. The results provide
more models of PCS networks to choose for the field trials. Moreover, billing rating
plans based on the effective call holding times are proposed. Chapter 5 focus on a
few billing strategies and performance analyses for PCS networks. Our strategies will
facilitate the billing experts to monitor and upgrade the billing systems and to detect
possible fraudulent activities. In the last chapter, we conclude this dissertation with

future research direction.
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Chapter 2

CELL TRAFFIC, CHANNEL
OCCUPANCY TIMES AND
HANDOFF RATE

2.1 Introduction

A convergence of Personal Communications Services (PCS) has led to the emer-
gence of networks poised to provide integrated services such as voice and data to
mobile users anywhere, anytime ([34, 6]) in an uninterrupted and seamless way, using
advanced microcellular and handoff concepts ([29]). Due to the growing importance
of PCS it is necessary to study their behavior for performance evaluation, optimiza-
tion, management and billing, under realistic conditions. Two of the key entities
in evaluating these systems are the channel occupancy distribution and the handoff

rates.

The channel occupancy time distribution has been studied in the past quite
extensively for classical cellular systems. A common assumption in these studies

has been that the call holding times (the times requested for a call connection) are
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exponentially distributed. Hong and Rappaport ([24]) proposed a traffic model for
cellular mobile radio telephone systems in which they analyzed the performance and
the channel occupancy time distribution approximated by exponential distribution
under the assumption of exponential call holding times. Using a simulation model,
Guerin ([20]) showed that for some cases the channel occupancy time distribution is
quite “close” to exponential distribution, and that for “low” rate of change of direction
the channel occupancy time distribution displays rather poor agreement with the
exponential distribution. Lin et al ([40]) showed that when the call holding times and
cell residence times are exponentially distributed, then the channel occupancy time
is also exponentially distributed. In ([36]) Lin et al obtained the expected channel
occupancy times for both new calls and handoff calls. Nanda ([50]) studied the handoff
rate under the assumption that the call holding times are exponentially distributed
and there are no blocking and forced terminations (i.e., corresponding to the ideal

assumption that there is an infinite number of channels available in each cell).

To model the PCS networks in a realistic way several observations are in order.
First, due to the wide spectrum of the integrated communications services (such
as phone calls, information retrievals, Internet surfing, etc.) carried jointly over
a PCS network, the call holding times may not be exponentially distributed, and
assumption made in the past for evaluating the behavior of classical wireless or
wireline telephone networks. Secondly, due to user mobility (portables or mobile
computers) and the irregular geographical cell structures, the cell residence times (the
time a user spends in a cell) will also typically have a general distribution. Thirdly,
the channel occupancy time in a cell, i.e. the time the channel is occupied by a call
in a cell (a new call, a handoff call, and regardless of the call being completed in
the cell or moving out of the cell) is also not necessarily distributed exponentially as
generally assumed in the past ([40, 50, 71, 72]). Lastly, to complete a call connection
in a PCS network, the user may traverse several cells and the call may consequently

be handed off many times before it is completed.
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This chapter presents a systematic study of the channel occupancy times and
handoff rate in PCS systems under real systems assumptions, leading to a number
of new results. Under the assumption that the call holding time is exponentially
distributed, we present a necessary and sufficient condition for the new call channel
occupancy time (the handoff call channel occupancy time, or the channel occupancy
time) to be exponentially distributed. Specifically, we show that the new call channel
occupancy time is exponentially distributed if and only if cell residence times are ex-
ponentially distributed. When cell residence times are not exponentially distributed,
we derive formulae to compute the distribution of channel occupancy times. In order
to apply Erlang-B formula, the cell arrival traffic has been assumed to be Poisson, a
common assumption for the computation of blocking probability in cellular systems
([8, 18, 40, 66, 71, 72]). However, for the cell arrival traffic which consists of merged
traffic of new calls and handoff calls, we show that the merged traffic is Poisson if

and only if the cell residence times are exponentially distributed.

The average number of handoffs during a call connection (also referred to as
the handoff rate) is the second focus of this chapter. Since service quality and cost
are tied to the handoff rate and the handoff call arrival rate, the expected number of
handoffs (i.e. the handoff rate) becomes an important performance index for the PCS
networks and consequently needs to be known. In this chapter we, therefore, derive
a general formula for the computation of the handoff rate under general conditions,
i.e., when the call holding times and cell residence times are generally distributed
with non-lattice distribution functions. Using the handoff rate, it becomes possible

to then compute the handoff call arrival rate.

Lastly, we observe that the technique proposed in this chapter also leads to a
practical model for deriving performance evaluation of GSM based mobile computing
systems. GSM provides data capabilities to support mobile computing applications.
The data capabilities include GSM phase 2 bearer data service, phase 2+ high speed
circuit switched data (HSCSD), and general packet radio service (GPRS) ([10, 45]).
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These data services are either circuit switched or packet switched at the transport
layer (i.e., at the wireline backbone network), but are all circuit switched at the radio
interface. In other words, a mobile computing user will occupy a traffic channel just
like a typical voice user. Thus, the modeling of radio resource allocation for GSM-
supported mobile computing system is similar to the radio channel allocation for
PCS, except that the computing session times in mobile computing are unlikely to
be exponentially distributed as in traditional PCS systems. As a result, previously
proposed approaches ([8, 42, 40, 66, 71, 72]) are not appropriate for modeling the
mobile computing systems (due to the exponential call holding time assumption).
By allowing the use of general call holding time distribution, our model can be used
to study GSM based mobile computing systems with arbitrary computing session

periods.

This chapter is organized as follows. In the next section, we discuss the properties
of channel occupancy times and the merged cell traffic. In the third section we present
analytical formulae for the computation of channel occupancy time distributions for
general cell residence times. In the fourth section, we present results on handoff rate
calculation. An illustrative example is given in the fifth section, with the last section

concluding the chapter.

2.2 Comments on Classical Assumptions Regard-
ing Handoff Traffic and Channel Occupancy

Times

In order to find the blocking probability in PCS networks, a commonly used
assumption ([8, 18, 66, 72]) is that the channel occupancy times are exponentially
distributed. While this is a reasonable assumption for wired telephone traffic and most

currently used cellular networks, we show that this assumption holds only for the case
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Figure 2.1: The time diagram for call holding time and cell residence time

when cell residence times are exponentially distributed, a property which does not
hold for emerging PCS networks. The second commonly used assumption is that the
merged traffic from the new call traffic and handoff traffic in a cell is a Poisson process
([8, 18, 40, 66, 71, 72]). This assumption is needed to apply the well-known Erlang-B
formula (or its extended version) using the M/M/c/c (or M/G/c/c) queueing model
to compute the blocking probability in a cell. Although this assumption regarding
merged traffic properties may be a good approximation for some cases, it can not
be expected to be appropriate for most PCS applications. In fact the fit of the
exponential distribution for these applications has not been quantified in the literature
until now. In here we show that this assumption is valid only for the case when cell

residence times are exponentially distributed.

Let us consider the first assumption first. Assume that the call holding times
(the times of requested connections to a PCS network for new calls) are exponentially
distributed with parameter u. Let t. be the call holding time for a typical new call,
t, be the cell residence time, r; be the time between the instant the new call is
initiated at and the instant the new call moves out the cell if the new call is not
completed, 7, (m > 1) be the residual life of call holding time when the call finishes

m—th handoff successfully. Let t,, and %, denote the channel occupancy times for a
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new call and a handoff call, respectively. Then, from Figure 2.1, for a new call, the

channel occupancy time will be

tno = min{t., r}, (2.1)
and the channel occupancy time is

the = min{ry,, t,}. (2.2)

Let te, tm, 71, tho and t,, have density functions f.(t), f(t), fr(t), fro(t) and fp,(%)
with their corresponding Laplace transforms fX(s), f*(s), f(s), fi,(s) and fr (s),

respectively.

We next show that the handoff call channel occupancy time %5, is exponentially
distributed if and only if the cell residence time %, is exponentially distributed. From

(2.2), we obtain the probability
Pr(tp, <t) = Pr(r, <tort, <t)=Pr(r, <t)+Pr(t, <t)—Pr(r, <tt, <t)
= Pr(rp, <t)+Pr(t, <t)—Pr(r, <t)Pr(t, <t)
= Pr(t. <t)+Pr(t, <t)—Pr(t. <t)Pr(t, <t), (2.3)
where we have used the independency of r,, and t,,, and memoryless property of the
exponential distribution of ¢. from the distribution of r,, has the same distribution

as t. (either from the Residual Life Theorem or the argument in [36]). Differentiating
(2.3), we obtain

fro(t) = fe(t) + f(t) — fe(t) Pr(t, < t) — Pr(t. <) f(1)
0 /1t T H )+ F() /t ~ p(r)dr. (2.4)

Suppose that the cell residence times are exponentially distributed with parameter 7,

then from (2.4) we obtain
Fro(t) = pe™ x e 4 ne™™ x e = (1 4 n)e” MY
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which is an exponential distribution. Conversely, suppose that the handoff channel
occupancy time has exponential distribution with parameter v, let Y (t) = [ f(¢),
then Y (t) = —f(t) (overdot - denotes the differentiation symbol). From (2.4), we
obtain

pe MY (t) + e M f(t) = ve
ie.,

Y(t) = pY () — ye 0701,
from which we obtain
Y(t) = e"Y(0)+ /Ot et [—ye T dr
= et {Y(O) - fy/ot 677(17'} = ¢ Omt,
Thus, f(t) = =Y (t) = (v — p)e~ O~ ie., the cell residence time must be exponen-

tially distributed.

We now consider the new call channel occupancy time distribution case. From

(2.1) and a similar argument, we obtain

Fro(t) = fu(t) /t T hm)dr + £ () /t * ()

Suppose that the new call cell channel occupancy time is exponentially distributed
with parameter, say, j;, from this identity and a similar argument as for the handoff
call channel occupancy time case, we can deduce that f,.(t) = (u; — pu)e~#1=#¢ which
is also an exponential distribution. Let F(¢) denote the distribution function of the

cell residence time with mean 1/7, from the Residual Life Theorem ([32, 46]) we have

fr(t) =n(1 = F(t)),

from which we obtain

F(t) —1— ue—(m—u)t
n
From this and F'(0) = 0, we obtain py — =1, so F(t) =1 — e ", and we conclude

that the cell residence times are also exponentially distributed. This shows that for an
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PCS network with exponential call holding times, the new call channel occupancy time
is exponentially distributed if and only if the cell residence times are exponentially

distributed.

In the preceding discussion we separated calls into new calls and handoff calls,
when considering the channel occupancy times. If such distinction is not made, then
we need to consider the channel occupancy time distribution for any call (either new
call or handoff call), i.e., the channel occupancy time for the merged traffic of new
calls and handoff calls, as used in current literature. We will simply call this the
channel occupancy time without any modifiers such as new call or handoff call. Let
teo denote the channel occupancy time and ), the handoff call arrival rate (which
will be discussed in a later section). Then, it is easy to show that t.,, = t,, with
probability A/(A + Ay)2p and t., = t;, with probability Ay/(A 4+ A\p)2q. Let f.o(t)
and fX (s) be its density function and the corresponding Laplace transform. It is easy

to obtain

feo(t) = Pfao(t) + afro(t)
= i) [ @ p0) [ e+ aro) [T p@dr+af) [ s
= e Loy [ 71— F@)dr o+ (on + a1l = F@)+af ()] (2.5)
It is straightforward that when the cell residence times are exponentially distributed,
then the channel occupancy time is also exponentially distributed. Conversely, sup-

pose that the channel occupancy time is exponentially distributed with, say, param-

eter 7, i.e., feo(t) = ye™ 7, from (2.5) we obtain

pun /too[l — F(T)]d7 + (pn + qu)[1 — F(t)] + ¢ f (t) = ye 01", (2.6)

From the left hand side of equation (2.6) with the properties of the distribution
function, we can deduce that v — p > 0. Let Y (¢t) = [°[1 — F(7)]dr, then F(t) =

14 Y (t), Y(t) = f(t), taking these into (2.6), we obtain

V() - (gn + )Y (1) + §W(t> - ge-w-mt. (2.7)
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One particular solution of (2.7) is in the form
Vi) = Be O,

where
B=— 7 >0
¢y* +(pn + qu) + pun
Noticing that the characteristic equation of (2.7) is

p p p
s* — (677+M)5+677M: (S—M)(S—gﬁ) =0,

which has roots s = u > 0 and s = (p/q)n > 0. If these two roots are equal, then all

solutions of (2.7) are given by
Y (t) = Cre" + Cotet + Be (1,

where C and Cy are constants. Since lim; ., Y (¢) = 0, we must have C1 = Cy = 0,
so Y (t) = Be~0"#* Similarly, if the two roots are not equal, then all solutions of
(2.7) are

Y (t) = Chet + C’Qe’[(”/")"]t + Be’(V’“)t,

so C1 = Cy = 0 from the definition of Y(¢). In any case, Y (¢) must be in the form
Y (t) = Be =Mt So, we have

F(t)=1+Y(t)=1—B(y— p)e 0"

From F(0) = 0, we obtain B(y—pu) = 1, hence F(t) = 1 —e~(""#! which implies that
the cell residence times are exponentially distributed. In summary, we have shown
that the channel occupancy time is exponentially distributed if and only if the cell

residence times are exponentially distributed.

Next, we discuss the second commonly used assumption, i.e., the merged traffic
of new calls and handoff calls in a cell is Poissonian. Assume that in a typical cell of
a PCS network, the new call arrivals are Poisson, then the handoff arrivals to the cell

are independent of the new call arrivals. Let N, (t) and Ny (¢) be the numbers of new
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calls and handoff calls, respectively, up to time ¢. Let N(¢) be the number of calls
from the merged traffic of the new call traffic and the handoff traffic. Then, we have

N(t) = N,(t) + Np(t), (2.8)

We want to use the Z—transform theory and the following result ([32]): for a traffic
with counting process N (t), N(t) is a Poisson process if and only if its Z—transform
E[zN®] is equal to exp(—At(1 — 2)). If Ny(t) is a Poisson process, then obvious N(t)
is a Poisson process, i.e., the merged traffic is a Poisson process. Suppose that N(¢) is
a Poisson process with parameter A\, and N,(t) is a Poisson process with parameter

A, then from (2.8) we have

E[ZN(t)] — ef)\mt(lfz) _ E[ZNn(t)+Nh(t)] — E[ZN"(t)]E[ZNh(t)] — 67/\t(17z)E[ZNh(t)]‘

From this, we obtain

B[N 0] = ¢~ On-Nt1-2),

Thus, the handoff traffic N, () is also a Poisson process. It is well-known ([5, 32, 46])
that for the M /G /c queueing system with first-come-first-serve (FCFS) strategy, the
departure process is a Poisson process if and only if the service time is exponentially
distributed. We next observe that the handoff traffic is the departure process of the
queueing system with the Poisson arrivals (the merged traffic) and with two virtual
“servers”: one “server” for the calls which complete the connection successfully in the
cell (the service time distribution is exponentially distributed due to the memoryless
property of exponential distribution), the other “server” for calls which need handoffs
(which forms the handoff traffic). The departure process from the first server is a
Poisson process since the departure process from the M/M/1 queue is a Poisson
process ([5]). As the handoff traffic is Poisson from the above discussion, from the
earlier referenced Burke’s result, the channel occupancy time must be exponentially

distributed, hence the cell residence times must be exponentially distributed too.

Summarizing the preceding discussion, we finally obtain:
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Theorem 2.1. For a PCS network with exponential call holding times and Poisson

new call arrivals, we can state:

(1) the new call channel occupancy time is exponentially distributed if and only if

the cell residence times are exponentially distributed,

(2) the handoff call channel occupancy time is exponentially distributed if and only

if the cell residence times are exponentially distributed,

(3) the channel occupancy time is exponentially distributed if and only if the cell

residence times are exponentially distributed, and

(4) the merged traffic from the new call traffic and handoff call traffic is still Pois-

sonian if and only if the cell residence times are exponentially distributed.

2.3 Channel Occupancy Times

In the preceding section we concluded that for channel occupancy time to be
exponentially distributed, the cell residence times had to be exponentially distributed.
However, the assumption of exponential cell residence times is too restrictive, since
it is important to know the distribution of channel occupancy time for generally
distributed cell residence times. It is furthermore important to find out how “close”
is the exponential distribution to the distribution of channel occupancy times. We

address these issues next.

From (2.4), applying Laplace transform, we obtain

fils) = P+ 020 = [Te s [ sunarde— [T e s [ prarar
— () / s+u/ ()det—/Oooe_St(l—e‘“t)f(t)dt

7] S
= + S+ ).
oy S+Mf( 1)
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From this, it is easy to obtain that the expected handoff channel occupancy time is
given by (we will use ()(z) to denote the ith derivatives of any function h(x) at

point x in the subsequent development)

zmmz—ﬁ9®=%u—ﬂm»

Similarly, from (2.1), we obtain

* _ H S *
fno(s) - S+M + S+/,Lfr (S+M) (29)

Since ry is the residual life of the cell residence time, from the Residual Life Theorem

([32, 46]) we have
fr(s) =

» |3

[1 - f*(S)],

where n = 1/E|[t,,], i.e., the cell residence rate. Taking this into (2.9), we obtain

N ns )
fials) = St = P )

from which we also obtain the expected new call channel occupancy time
Bltwo] = ~f580(0) =~ — 21— ()],
pnoop
Similarly, we can obtain formulae for channel occupancy time.

It is commonly assumed that the new call channel occupancy time and the
handoff call channel occupancy time have the same distribution. However, we claim
that this is true only when the cell residence times are exponentially distributed. In
fact, suppose that channel occupancy times for both new call and handoff call have
the same distribution, then their Laplace transforms are equal, fr (s) = fr,(s), we
obtain that f*(s+ u) =n/(s+ p+n), hence f*(s) =n/(s+n), this implies that the
cell residence times must be exponentially distributed.

Summarizing the above discussions, we arrive at:

Theorem 2.2. For a PCS network with exponential call holding times and Poisson

new call arrivals with arrival rate A, we have:
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(1) the Laplace transform of the density function of the new call channel occupancy

time is given by

N NS 1 e
fno(s) - S+M+ (5+,U/)2[1 f ( +:u’)]7 (210)

and the expected new call channel occupancy time is

EmAzi—%U—me (2.11)

(2) the Laplace transform of the density function of the handoff call channel occu-

pancy time is given by

frals) = S s ) (2.12)

and the expected handoff call channel occupancy time is
1 k
EWAZ;O—f(M) (2.13)

(3) let A, denote the handoff call arrival rate, then the Laplace transform of the

density function of channel occupancy time is given by

* _ A * )‘h *
fco(s) - )\+)\hfno(8) + )\+)\hfho(8)‘

(2.14)

and the expected channel occupancy time is given by

1 An Ahﬂ) ]
Eto)=—+——7—11—-(1—-——]f" . 2.15
tul =1~ oo |1 (17 ) £ .15
(4) the new call channel occupancy time and the handoff call occupancy time have

the same distribution if and only if the cell residence times are exponentially

distributed.

Remark: The expected channel occupancy times E|t,,] and Elty,] given in (2.11) and
(2.13) have also been obtained in [36] from a direct approach.

Using Theorem 2.2, we can obtain the channel occupancy time density func-

tions by the inverse Laplace transform, from which the distribution functions can
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be obtained. In order to observe how “close” the exponential approximations can
be, we have to determine which exponential distribution functions should be chosen.
It is known that an exponential distribution is uniquely determined by its expected
value. It is reasonable to use the exponential distribution whose expected value is
equal to the real expected value of channel occupancy time (either (2.11), (2.13) or
(2.15)). There are many criteria to evaluate this approximation, known in statistics
as the “goodness of fit”. A good choice will be the distance between the distribution
functions of the real data and the exponential data. Hong and Rappaport ([24])

proposed the following measure for the “goodness of fit”

oo O IE@) — (1 — e dt
2[°(1—=F(@t)dt

where F(t) is the distribution function of real data and a is the expected value
of the exponential distribution used for the approximation. This measure is the
normalized accumulated difference of distribution functions. Comparisons can also
be done graphically by drawing distribution functions, which will be used in the

illustrative example in fifth section.

2.4 Handoff Rate for General Call Holding Times

and Cell Residence Times

As pointed out in the Introduction it is necessary to study the number of handoffs
occurring in a call if one wishes to evaluate a PCS network. For certain special cases,
results for handoff rate exist in the current literature. In [50], Nanda presented an
analytic result of handoff rate for the case when the call holding time is exponentially
distributed and no handoff failure occurs (which is equivalent to the case where each
cell has an infinite number of channels available). This is, of course, the ideal case.
Lin et al ([40]) considered the more practical case where handoff failures are taken

into consideration and presented a formula for the case when call holding times are
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Figure 2.2: The time diagram for £ handoffs

distributed exponentially. In this section, we present a formula for the general case
where the call holding times and cell residence times are generally distributed, and

handoff failures are accounted for.

Consider a typical call. Let 1,5, - - - denote the cell residence times and r; denote
the residual life of the new call (i.e., the time interval between the call arrival and the
exit of the cell of the portable). Let t. denote the call holding time for the typical call.
We use Figure 2.2 to indicate the time diagram for k£ handoffs. Let H be the number
of handoffs of a typical nonblocking call (either completed or forced to terminate)
during the call connection. We can now study the property of the number H of

handoffs under a general call holding time and cell residence time distributions.

Let f*(s) and fX(s) be defined as in the last section. We will assume that
t1,ts, ... have independently and identically distributed (iid) nonlattice distributions,
and that the call holding time has generally distributed nonlattice distribution ([46]).
The following is apparent: H = 0 if and only if the call is not blocked and the call
holding time %, is shorter than the residual life r, i.e., the call completes before the
portable moves out of the cell; H = 1 if and only if the call is not blocked initially,
then it either makes a successful handoff and completes the call successfully in the

new cell, or is forced to terminate because of the first handoff failure, and so on. If
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the blocking probability for a new call is p, and the probability for a handoff call to

be forced to terminate is py, then we have

Pr(H=0) = (1-p,) Pr(r; >t.)

Pr(H=1) = (1—p,) Pr(r <t.<ri+t)(1—ps)+(1—p,) Pr(t. >r +t2)py

Pr(H=k) = (1—=po)Pr(ri+to+ -+t <te<ri+tod-+tpp)(1—ps)F
+ (1 - po) Pr(tc >7ry+ty+---+ tk)(l _ pf)kflpf
(2.16)

Let o be a positive number which will be appropriately chosen for Laplace inverse

transform.

We first calculate Pr(H = 0). Since the Laplace transform of [ f,.(7)dr is
(1— fr(s))/s and the independency of t. and 7, from the first equation in (2.16) and

the inverse Laplace transform we have

Pr(H=0) = (1—p,) /0°° Pr(ry > t) f.(t)dt

- 1—po/ / £ (T £ol)
_ 7o 1 — f7(s) s
= e [T [ e

_ L1-p / 71— fi(s) /0 P L )etdtds

2ry Jo—joo S
1 py otio 1 — f2(s)

= — T~ f*(—3s)ds. 2.17
o /M_OO i (—s)ds (2.17)

Next, we compute Pr(H = k) for £ > 0. Before we do that, we need to compute
Prri+to+---+tp < t.). Let £ =71 +tp+- -+t Let fe(t) and fi(s) be the density

function and the Laplace transform of £&. From the independency of rq,,1%3, -+, we
have
k
fi(s) = Ele™*] = Bl | [[ Ble™™"] = £y (s)(f*(s))* .
i=2



So the density function is given by

1 o+joo
) = 5= [ R () s

Also, the Laplace transform of Pr(§ < t) (the distribution function) is f#(s)/s. Thus,

we have

Pr(ry 4ty + - +tp < t.) = /OOO Pr(¢ < 1) f.()dt

L[ O g

0 275 Jo—joo s
1 posioe fr(s)[f*(s)]*! .
ﬁj/ajoo . fi(—s)ds.

Taking this into (2.16), we obtain

Pr(H =k) = (1 —po)[Pr(te > ri +ta + -+ + 1)
—Pr(te>r+ta+ -+ tp)](1 — pf)]c
+ (L =po) Pr(te > 11+ to+ -+ ) (1 — pp)*py
_ Umn)Oopg e BRSO,

C

2mj —joo S
(1= po)(1L=ps)*'py potico fE(s)[f* ()" .
+ 2 ! f/gjoo . fx(s)ds
(A =po)@ =pp)*t potice fr(s)[1 = (L=pp) I
- 217 : /a_joo J; fe(=s)ds.

(2.18)

Now we want to find the Z—transform (moment generating function) for the number
of handoffs. Let H(z) be the moment generating function, from (2.17) and (2.18) we

have
H(z) = E["] = gj ZPr(H = k)

= Pr(H =0)+ izk Pr(H = k)

= Pr(H=0)+
+w /a+j°° fr(s)[1 = (1 —pg)f(s)] (i[(l — pf)zf*(s)]k_1> fi(—s)ds

2] —joo s
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_ (1 — Po) /Uﬂoo Lf()f*(_s)ds

(1—po)z ot fr(s)[L = (1 = pp)f*(s)] .
2] /]oo s[1— ( —pf)Zf (s)] fel=s)ds

ﬂ/”“‘” 1— f7(s) +2[f7(s) = (L —pp) f*(s)]

21§ Jo—joo s[l = (1 = pg)zf*(s)]

1—p, fotice s —pll — f*(s)] + 2[n(1 — f*(s)

2mj Jo—joo s?[1 —z(1 _pf)f

+

fe(=s)ds

) = (L= pp)sf(s)]
*(5)]

fc*(—S)dS,
(2.19)

where f*(s) =n(1 — f*(s))/s. It is obvious that when |z| < 1, the integrand without
term f*(—s) is analytic on the right half open complex plane. If f*(—s) has no branch
point and has only finite possible isolated singular points in the right half plane (which
is equivalent to saying that f(s) has only finite possible isolated singular point in
the left half plane), then the Residue Theorem can be applied to (2.19) using a semi-
circular contour in the right half plane. Indeed, if we use 0. denote the singular points
of f¥(—s) in the right half complex plane, then from (2.19) and the Residue Theorem
([35]) we obtain

Theorem 2.3. If the density function of the iid calling holding times has only finite
possible isolated singular points, then the moment generating function for the number

of handoffs is given by

H(z) = —(1 - pp) 3 Res T ML= @2l = () = (L= p)sf ()]

pEae ° P s2[1 — 2(1 —py) f*(s)] fe(=s),

(2.20)
where R;as denotes the residue at singular point s = p.
Proof: Choosing such o that all singular points of f(—s) in the right half plane are
on the right of vertical line s = o, and choosing the contour enclosed by the semicircle
at center s = 0+ 70 and with radius sufficiently large, then we can apply the Residue

Theorem to complete the proof.

We can apply Theorem 2.3 to obtain the moments of the number of handoffs.

However, we can apply (2.19) to easily find the expected number of handoffs. Differ-
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entiating H(z) at z = 1, we obtain

I e | A C) RPN
BlH] = /Joo P ——T )]f( )ds. (2.21)

Applying the Residue Theorem, we obtain
Theorem 2.4. If the density function of the iid calling holding times has only

finite possible isolated singular points, then the expected number of handoffs for a

nonblocking call (handoff rate) is given by

E[H] = —n(1-p,) > Res L= /'(s)

pET =P 52[1 - (1 — pf)f*(s)]f:(_s) (222)

If the call holding times are exponentially distributed with parameter p, then
fX(=s) = p/(—s + p), which has a unique singular point, and o, = {u}. From
Theorem 2.4, we obtain

n(1 - f*(w)
pll = (1= py) fe(u)]

This has been obtained in [36] and [40] using different approaches.

E[H] = (1 - p,) (2.23)

If there is no blocking and no forced termination (the ideal case when there are
infinitely many number of channels available in each cell), then p, = p; = 0, and
from (2.23) E[H] = n/u, or the handoff rate is 1/E[H] = u/n, which is obtained
n [50]. If there are handoff failures, the expected number of handoffs is intuitively
smaller. Indeed, for any handoff schemes, since 1 — f*(u) < 1— (1 —py) f*(p) for any
pr (0 <py <1), we have from (2.23)

Let us assume that the call holding times are iid with Erlang distribution

amtm—l ot . B a m
) = e = (=) (2.24)

where o = mn is the scale parameter and m is a positive integer. When m = 1, it

gives the exponential distribution. We can also find a simple formula for the handoff
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rate. Let
- 1— f*(s)
g(s) = s 1 — (1 —py)f*(s)]

Then, f*(—s) =[a/(—s+ «)]™ has a unique singular point o, = {a}, from Theorem

(2.25)

2.4, we obtain

(m—1)

E[H] = n(-1)"'a™(1 — po)g( COR— (2.26)

m—1)!"
For this case, if there is no handoff failure, i.e., p, = py = 0, from (2.25), we have

g(s) = 1/s% and g™ ") (a) = (=1)"'mla~(m+D . From (2.26), we have

In fact, it can be shown that for the ideal case (p, = py = 0), the expected
number of handoffs for any cell residence time distribution and any call holding time
distribution is E[H| = n/u. Indeed, from (2.21), if p; = 0, we obtain

]_ _po 77 o+j00 ]_ 9] 1 o+joo ]
E[H] = / S)ds =n(1=p,) [ flt / = eds)| dt
1 s =) [T 40 |5 estds

= (1 —po)/0 th()dt = (1 — po)~ =

n
poop

=

(if Do = O)

Next, we show how to find the handoff call arrival rate from the handoff rate.
It is easy to observe that for each nonblocking new call, there will be on the average
E[H] number of handoff calls induced, so the handoff call traffic will have arrival rate

A = AE[H]. From Theorem 2.4, we obtain

Theorem 2.5. If the density function of the iid calling holding times has only finite
possible isolated singular points, then the handoff call traffic has the arrival rate given

by

1— f*(s)
A= —n(1 —po)A Res fi(=s). (2.27)
p; P s?[1— (L= py)fr(s)]
The traffic intensity in a cell is given by
P = )\E[tno] + )\hE[tho]; (228)
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where Elt,,] and Elty,] are the channel occupancy times for new calls and handoff

calls, respectively.

Proof: We only need to prove the formula for the cell traffic intensity. The overall
traffic arrival rate is A + A, and the expected channel occupancy time is

A A,
A B
Ny Pl 5T

E[tho]a

hence (2.28) is straightforward. This completes the proof.

If the call holding times are exponentially distributed, then from Theorem 2.5

and (2.23), we have

>\h — 77(1 - po)[l — f*(lu')])‘ (2‘29)

plt = (1 =pp)fr(w)]’
and if we further assume that the nonprioritized handoff scheme is used (i.e., p, = py),

then from Theorem 2.5 we have

o é B pon[l _ f*(:u)]
= ) (2:30)

These have been obtained in [36] using a different approach.

If the call holding times are Erlang distributed according to (2.24), then we have

g™ (a)

Ap = Anp(—=1)" o™ (1 — po)m,

o = mp. (2.31)

The cell traffic intensity can be computed from this formula and the expected channel

occupancy time.

When the call holding times are Erlang distributed, we have to compute the
derivatives of g(s) (in (2.25)) for the computation of handoff rate and handoff call
arrival rate. However, the explicit expressions for the derivatives of ¢g(s) may be diffi-
cult. We therefore develop the following recursive algorithm for their computations.

Let
h(s) = s*[L = (1 —pg) f*(s)].

Using the formula



we obtain

W) = 1= (1 —ps)f*(a)]
(@) = —a®(1—ps)f*P(a) + 201 = (1 = py) ()]
W) = —a®(1 - p)f*P(a) —da(l —py) () + 201 = (1 - py) f*(a)]
WP (a) = —a®(1—pp)f*P(a) - 2pa(l — p;) 7V (a)
—p(p =11 = ps) (), p>3
Since we have g(s)h(s) = 1 — f*(s), differentiating both sides we obtain (p > 0)

zp: (?) gD ()P (5) = — f*@)(5).

0 ]

From this, we obtain the following recursive algorithm to compute g™~ (a):

0) 1 - f*(a)
9" () “hia)
*(p) o p:l p (7') o (p—i) «

h(«)

2.5 Illustrative Examples

This section presents several demonstrative examples showing how the derived
models can be used to study properties of channel occupancy times and handoff rate

in the emerging PCS networks.

First, we assume that the call holding times are exponentially distributed with

parameter u. The following identity is useful for this example:

[ ewyerar = - (i (c;t!yc)

t (0% k—0

The distribution function F(¢) of the Erlang distribution is given by

F(t) = Pr(t,, < ) = /Utf(T)dT —1-
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Figure 2.3: Distribution of handoff call channel occupancy time (solid line) and its

exponential fitting (dashed line)

We consider the handoff call channel occupancy time distribution first. From (2.3),
we can find the distribution function Fj,,(t) of the handoff call channel occupancy
time as follows

Fro(t) = Prty, <t) = Pr(t, < ) [l—Pr(t < D]F(#)

- 1- (rnzl (O‘,t)i> e~ (atmt (2.32)

|
i—0 b

It is important to compare the real distribution function of handoff call channel

occupancy time and its exponential fitting. Since expected value must be the same,
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we use the formula (2.13) to compute the expected value, and use its inverse as the
parameter which determines the exponential function. Varying the shape parameter
m from 2 to 5, we obtain the comparative plots in Figure 2.3. From this figure, we
observe that the exponential approximation is not good, and it becomes worse when m
grows. As we know, the variance of the cell residence time is 1/(mn?), which decreases
when m increases. Hence, we can conclude that the exponential approximation is not
suitable for the handoff call channel occupancy time distribution when the variance

of the cell residence time is very small.

Next, consider the new call channel occupancy times. Let F),(t) denote the
distribution function of the new call channel occupancy time, then from (2.1), we

obtain
Foo(t) :Pﬂ%§ﬂ+ﬂ—ﬁm§ﬂﬁﬂm§ﬂ:1—em+e”[ﬁﬁﬂ¢
= 1—etr et i [ g =1 [ i
= 1—ne ™ /too[l — F(r)]ldr =1 —ne ™ /too mijl (ai—f)iede
=0 :

m—1 1 (Oét)k
_ —Mt —at
s (55
1 m—1 t 13
= 1— ~ (m — i)%e_(‘“’“)t (noticing that o = my)
i—0 '
m—1 . t [
= 1- (1 - i) () —rar. (2.33)
= m 7!

From Figure 2.4, we observe that the new call channel occupancy time is less sensitive
to the variance of cell residence times than the handoff call channel occupancy time,
and the exponential fitting for new call channel occupancy time is better than the

handoff call channel occupancy time.
From (2.32), (2.33) and Theorem 2.2, we can obtain the distribution F,(¢) of
channel occupancy time as follows

A A
A ru
IESWAGCRS v

Fco(t) = Fho(t)
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Figure 2.4: Distribution of new call channel occupancy time (solid line) and its

exponential fitting (dashed line)
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Figure 2.5: Distribution of channel occupancy time (solid line) and its exponential

fitting (dashed line)

_ = Ni (at)i —(pta)t
= 1—2(1—m(/\+/\h)> et (2.34)

= i!

Figure 2.5 shows the channel occupancy time (used in calculating the blocking
probabilities). We observe that the channel occupancy time can be appropriately
approximated by the exponential distribution when m = 2. However, there are
significant discrepancies between the distributions of the actual channel occupancy
time and the exponential distribution approximations when m becomes larger (i.e.,

the variance of the cell residence times becomes small).

Figures 2.6, 2.7 and 2.8 show the distributions of the new call channel occupancy

time, handoff call channel occupancy time and channel occupancy time, respectively,
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Figure 2.6: Distribution of new call channel occupancy time (solid line) and its

exponential fitting (dashed line): small mobility n/u
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Figure 2.7: Distribution of handoff call channel occupancy time (solid line) and its
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exponential fitting (dashed line): small mobility n/u
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Figure 2.8: Distribution of channel occupancy time (solid line) and its exponential

fitting (dashed line): small mobility n/u
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when the mobility n/u is small (i.e., the customers are less mobile than the previous
case). We observe that the new call channel occupancy time distribution has a
good approximation by the exponential distribution, while there is still a significant
mismatch between the handoff call channel occupancy time distribution and the
exponential distribution. However, the channel occupancy time distribution can be

better approximated by the exponential distribution.

Finally, we turn our attention to the expected number of handoffs. Assume that
the call holding times are Erlang distributed. We shall use equation (2.26) and the
recursive algorithms given at the end of the previous section. The cell residence times
are Gamma distributed with the density function

B g (LB 4
10 =" o= (125) =

where 7 is the shape parameter, /3 is the scale parameter and the I'(7) is the Gamma

function. The mean and variance of this distribution are 1/n and 1/(yn?), respectively.

Figures 2.9 and 2.10 show the expected number of handoffs for different blocking

probabilities and forced termination probabilities. We observe the following:

(a) The expected number of handoffs for fixed variance of the cell residence times

(i.e., fixed m) is increasing as the mobility 77/ p increases, as expected intuitively;

(b) The expected number of handoffs is increasing for fixed mobility as the variance

of the cell residence times decreases (i.e., m is increasing);

(c) The expected number of handoffs is smaller than in the ideal case (when there is
no blocking and no forced termination), which confirms our earlier expectations

and conforms with general intuition;

(d) The expected number of handoffs is insensitive to the variance of the cell residence

times when mobility n/u is small;
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Figure 2.9: Expected number of handoffs: solid lines for m = 1-5 with p; = p, = 0.02,
dashed line for the ideal case (p, = py =0)
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Figure 2.10: Expected number of handoffs: solid lines for m = 1-5 with p, = 0.1 and
py = 0.05, dashed line for the ideal case (p, = p; = 0)
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(e) When handoff calls are given priority over new calls, the variance of the cell

residence times affects the number of handoffs more significantly.

2.6 Conclusions

In this chapter, we have investigated the channel occupancy times and handoff
rates (the expected number of handoffs) for GSM based mobile computing networks
and integrated PCS networks. It has been shown that except for the case of exponen-
tially distributed cell residence times, the channel occupancy time is not exponentially
distributed, the handoff traffic is not Poisson, and the merged call traffic to a cell is
not Poisson, contrary to commonly made assumptions in the past. We have derived
the analytical expressions for channel occupancy time distributions, and provided
comparisons with the real channel occupancy time distributions and the exponential
fitting. The results presented here can be used to evaluate the goodness of the
exponential distribution approximation. We further studied the handoff rate , and
provided analytical results for generally distributed call holding times and associated
cell residence times. The above results were demonstrated to be useful in the traffic

study, performance evaluation, management and billing of PCS networks.
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Chapter 3

CALL COMPLETION
PROBABILITY AND
EFFECTIVE CALL HOLDING
TIMES

3.1 Introduction

In the last chapter, we have studied the cell traffic, channel occupancy times
and handoff rate under very general assumptions. In this chapter, we study the
second-level modeling: given the requirement for the blocking probability and the
handoff failure probability, determine the call completion probability, the call incom-
pletion probability and the effective call holding times under exponentially or Erlang

distributed call holding time distribution and general cell residence time distribution.

In a PCS network, when a new call is originated and attempted in a cell, one
of the channels assigned to the base station is used for the communication between

the mobile portable and the base station as long as a channel is available. When all
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channels in a cell are in use while a new call (or handover call) is attempted in the
cell, the call will be blocked and cleared from the system. When a call gets a channel,
it will keep the channel until its completion, or until the mobile moves out of the cell,
in which case the channel will be released for other use. When the mobile moves into
a new cell while its call is ongoing, a new channel needs to be acquired in the new cell
for further communication, using a handover procedure. During handover, if there is
no channel available in the new cell for the “ongoing ” call, it is forced to terminate
before its completion ([29, 34]). In order to evaluate this behavior in a PCS network,

the following three possibilities need to be considered.

e The call is blocked at its call initiation and is never connected (a blocked new

call);

e The call is connected, successfully makes one or more handovers, but is forced
to terminate before its completion because of the lack of an available channel

(an incomplete call);

e The call is connected and completed (a complete call).

In a PCS system, one ideally wishes to allow all calls to be completed. Clearly, in
the presence of channel availability limitations, this objective is not obtainable at all
times. As an alternative, one wishes to make the call completion probability as high

as the grade of service (GoS) needed.

When defining the right objective a major practical consideration is obviously
pricing. The use of the same flat rate for both complete and incomplete calls is unfair
and commercially unattractive. To stay competitive, a PCS network provider may
apply discounts for calls that were not completed ([39]). However, since incomplete
calls may spend significant time using PCS network resources, it is also impossible
for the provider to apply a constant discount rate to all incomplete calls. In order to

determine a reasonable (if not optimal) discount factor, it is therefore necessary to
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know for how long a call (either complete or incomplete) has used the network. The
duration of the requested call connection is referred to as the call holding time. The
duration of a actual call connection for an incomplete call will be called the effective
call holding time of an incomplete call while the duration of a actual call connection
of a complete call will be called the effective call holding time of a complete call. 1t is
obvious that the duration of a requested call does not depend on the PCS network,
it only depends on the mobile user (how long he wishes to maintain the call). For
simplicity, we will term this duration the call holding time, as this is consistent with
the ideal case when there are infinite numbers of channels and the handover procedure
does not affect the duration of a connection. In reality, the number of radio channels
is limited and handover procedure does come into play. The duration of a actual call

connection will depend on PCS network: its traffic situation, channel availability, etc.

As we mentioned earlier, the performance modeling of a PCS network can be
conducted at two levels. The first level modeling uses the number of radio channels
in cells as an input parameter to determine the new call blocking probability and
the forced termination probability. The second level modeling uses the new call
blocking and the forced termination probabilities as input parameters to study the
call completion probability (or the probability that a call is successfully complete)
and the expected effective call holding times of a complete or an incomplete call.
This chapter deals with second level modeling. The extension of our results to the
first level modeling is possible and will be treated in the future. Since existing cellular
systems are typically engineered at 1 — 2% new call blocking and forced termination,
these default values may be used as the reference input parameters for second level
modeling. However, the call completion probability and the expected effective call
holding times can not be derived directly from these two parameters. Both the cell
residence time and the call holding time distributions must carefully be chosen to
reflect the real systems. In our model, a general cell residence time distribution is

considered, which can be used to accommodate any real PCS system. The selection
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of the call holding times were in the past typically assumed to be exponentially
distributed. Such an assumption may be reasonable when the calls are charged based
on the lengths of the call holding times. The assumption is no longer valid however
for the modern telephone services which apply flat rate billing programs. Flat rate
billing encourages people to make long calls (for example, people may log on from their
PCs at home to main computers in the companies through local telephone calls and
keep the connections for sometimes several days). Thus, with current communication
environments long tails are observed for the call holding time distributions. In recent
telephone network engineering ([3]), lognormal distributions ([22]) have been used to
approximate the wireline call holding times. For most existing cellular systems, the
wireless calls are charged based on the call holding times, and these systems can be
appropriately modeled with the exponential call holding time distribution ([40, 43]).
However, for the future PCS systems (especially the low power PCS systems such
as CT-2 ([64]), DECT ([9]), or PACS ([52]), flat rate billing programs have been
proposed. Thus, it is very important that we follow the wireline telephone network
engineering approach; that is, use more general distribution to represent call holding

time distribution.

In order to determine the call completion probability and the effective call holding
times, we need to know the call arrival distribution, call holding time distribution and
cell residence time (i.e. a mobile stays in a cell) (reflecting the frequency of handovers
or the mobility of a mobile portable). We will call the duration of a call in a given

cell the cell residence time. In this chapter, we will use the following assumptions:

e The call arrivals form a Poisson process;

e The cell residence times (the intervals that a portable stays in the cells) are

independent, identically distributed (iid) non-lattice distribution;

e The call holding times are independent, identically distributed (iid) with non-

lattice distribution.
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The last two assumptions are a generalization of conventional analysis assump-
tions (e.g., the commonly used exponential distribution satisfies these two assump-
tions) and are chosen to fit the emerging PCS networks. The cell residence times
should be general, since the time the mobile may spend in a cell may be highly
variable due to the mobile speed and motion, and the geographic situation in the
cell. For example in an urban area the routes the mobile users take may be highly
irregular. The rate of the residence times is used to describe the mobility of the

mobile portable.

In the traffic models studied in the literature, the call holding times are assumed
to be exponentially distributed for reasons of tractability ([24, 68]). Under the
assumption of exponentially distributed call holding times, Lin et al ([40, 43]) studied
the performance of channel assignment strategies and obtained analytical results for
forced termination probability and new call blocking probability. Under the same
assumption, Lin and Chlamtac ([39]) analyzed the call completion probability and

the expected effective call holding times.

In this chapter, we study the case of PCS networks using the generalized assump-
tions above. For this generalized model we obtain formulae for the call completion
probability and the distribution (its Laplace transforms) of the effective call holding
times of both complete and incomplete calls, from which expected effective call holding
times can be derived. When the call holding times are Erlang distributed, easily

computable formulae are given and recursive algorithms are developed.

3.2 Call Completion Probability

In this section, we study the call completion probability. Previously, Lin and
Chlamtac ([39]) obtained a formula for the call completion probability for a PCS
network with a general residence time distribution and exponential call holding time

distribution. Here, we generalize these results to the case when call holding times
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Figure 3.1: The timing diagram for a forced terminated call at kth handover

have a more general distribution.

We first consider the effective call holding time ¢ for an incomplete call. Figure
3.1 illustrates the timing diagram for the call holding time, where 77 is the time that
the portable resides at cell 1, and t; (i > 2) is the residence time at cell i. According
to our assumptions, 17, ts, ..., 1, ... are iid. Let ¢; have non-lattice density function
f(-) with the mean 1/n and f*(s) be the Laplace transform of f(-) (we will use
to denote the Laplace transform following the tradition, [32]). Suppose that a call
for the portable occurs when the portable is in cell 1. Let ¢; be the interval between
the time instant when the call arrives and that when the portable moves out of cell
1. Let r(t;) and r*(s) be the density function and the Laplace transform of the ¢,
distribution, respectively. From the renewal theory ([32]), ¢ is the residual life of the

cell residence time of the portable in cell 1, so we have

r(h) = n [ [flr)dr (3.1)

r(s) = 21— () (3.2)

Consider the effective holding time ¢ = ¢, +t5 + - - - + t;, where fi(¢) and f;(s) are its

density function and Laplace transform. Since ¢; (i = 2,3, ..., k) are iid, it is easy to
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derive

fi(s) = Elexp(=s(Ty + Zt [ == ) (). (33)

w |3

Let p, be the probability that a new call attempt is blocked (i.e., the call is never
connected), p. be the probability that a call is completed (i.e., the call is connected
and completed), p; be the forced termination probability or the probability that no
radio channel is available when a handoff call arrives. Then the probability of an
incomplete call (i.e., the call is connected but is eventually forced to terminate) p; is

1 — p, — p., which can be expressed as

T=po=pe = LA [T =)0 = pp)* ppflte)dtdt
k=1
= ST a-pno0 - o [ far] @t G
k=1
where f.(t.) is the density function of the call holding times. In the first equation, the
term in {-} is the probability that a call is forced to terminate at the kth handover
(notice that the call is connected with probability 1 — p,, and then makes k — 1

k-1

successful handovers with the probability (1 — py) and is forced to terminate at

the kth handover with probability ps). In the following derivation, we use the inverse
Laplace transform formula. We will use o to denote the real number with appropriate

meaning used in the inverse Laplace transform formula ([35]). From (3.4), we have

1_po_pc:

— (1= p)p fj/om l%] - Stds]( )t Moofc(tc)dtc]dt

= ( _p" / /Uﬂoo l 1f )(1 —py)* ] eflds {/too fc(tc)dtc] dt
— (1 —po pf/ /aﬂoo LZE% (1- NIF ()L _pf)kl] s

X [ /t fc(tc)dtc} di

= Lot [ [ S LSy ] et

k=1 s

M8q\

g
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< | [ neore) d
_ - po pfn / /a+aoo 1— / 1 — _lpf)f*(s)estds [/t‘x’ fc(tc)dtc} g

_ (1_21’% ”j:"sl_l(l__fp(f))f o {/Ow et [/:o ot dt.| di }ds. (3.5)

Assume that the oy > 0 is such that e™* [ f.(t.)dt. < M < oo for any ¢ (this will

be true for most interesting distributions such as exponential or Erlang distribution),

then choosing o < o, we have

/oo st /oo fo(te)dt.| dt = /oo et
0 t 0

_ /oo e,(g—lfo')t eo’t/ fc( )dt
0 t

Moreover, we have

/t N fc(tc)dt dt

“=tqt = M /(0 — 0) < .

/ et / ” fe(te)dt.dt
0 t

1 t/oo 00 1 00 d 00
= —¢f (t.)dt, ——/ St—/ L(t.)dtdt
etf()osoedttf()

S

1 1 o (—s)—1
= ___|__/ GStfc(t)dt: &
s sJo s
Taking this into (3.5), we obtain
1— o+joo 1— f* “(—s) —1
]-_po_pc — 77( po)pf/ J f (8) fc( S) ds
275 o—joo S[1 — (1 —pys)f*(s)] s

_ L fria (1 f(5)(1— f2(=9))
DRy M e e v oy

Since f*(s) has no poles in the right half complex plane, |(1 — py)f*(s)| < 1. Let o

(3.6)

denote the set of poles of f*(—s) in the right half complex plane (i.e., —o. = {—z|z €
0.} is the set of poles of f¥(s) in the left half plane). Choosing the contour that
including the vertical line z = o and the semicircle Cr = {z = 0+ Re’?| —7/2 < 0 <
7/2}, noticing that the integrand in (3.6) in the order of 1/R? as R — oo, using the
Residue Theorem ([35]), from (3.6) we obtain

) (1= F* )L~ f2(=9))
bopompe= =L = poly | =BG G )
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from which and the fact that the residue of an analytic function is zero we finally

arrive at

Theorem 3.1. The probability that a call is completed is given by

- o 0= FE)
SRR B e errze)l

where I—s{_eps denotes the residue at pole s = p.

Remark: Since f*(s) is analytic and bounded by unity in the right half complex plane,
the (1—f*(s))/s*[1—=(1—ps) f*(s)] is analytic in the right half plane, hence the function
(1= f*(s))fr(=s)/s*[1 — (1 — ps) f*(s)] has the same poles (including multiplicities)
as the function f*(—s) in the right half complex plane. In the computation of the
residue in Theorem 3.1, we only need to consider the poles and their corresponding

multiplicities.

Next, we show how to compute p. for a few specific cases. If the call holding
times are exponentially distributed with the density function f.(t) = pe *, then its
Laplace transform is given by f¥(s) = u/(s+ p) which has a simple pole p in the left

half plane. From Theorem 3.1, we obtain

o RO AN

pe = (=pa) (1 mes Bes G —pp)f(s)]]
N o (L= P (8)/ (=5 + 1)

= (1=po) _1+77pf e ern—n —pr)f*(s)] ]
N N ¢ S A O G R )
= (1—-po) _1+l%u( ) s2[1 — (1 — py) f*(s)] ]

npy(1— f*(u)) ]
pll— (L —pp)fwl]

This is obtained in [39] using a different approach.

(3.8)

— (1= |i-

Assume now that the call holding times are Erlang distributed with the following

density function

(at)™"'
felte) = (m—11 om=1,2,...
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where m is the shape parameter and o = my is the scale parameter. This density

function has the following Laplace transform

o= ()

and f*(—s) has a unique pole at « in the right half complex plane. Let

- 1— f*(s)
g(s) = s 1 — (1 —py)f*(s)]

As we remarked before, this function is analytic in the right half complex plane. From

Theorem 3.1, we obtain

Pe = (1 _po)

o m
Lt ls%:egg(s) (—s + oz) ]

77pf dmfl

= (=p)l+ (0" g™ V)]

Thus, we have

Corollary 3.1. For a PCS network with Erlang call holding times, the probability

of a call completion is given by

pe= (1= po)1 + (=) g™ V() (3.9)

where g™~ (a) denotes the derivative of (m — 1)th order.

When m = 1, we have

pe = (1= po)[1 = npsag(@)] = (1= p,) {1 - a[lmifg :ZJ:)(?B()@)] } ’

this is the same as (3.8) (o = u in this case), which is not surprising because Erlang

distribution is exponential when m = 1.

When m = 2, since

/ _i l—f*(S)

g@_@<ﬂ%ﬂ—mW®0

) ) (0-p) )0
A0 p)F ] PO p) i@ T - A=) O
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Thus, from Corollary 3.1, we obtain

pe = (1= po)[1 +npsa’y ()]

o o= f) |

- ”°){1 e e

{ D(a)/a+ (1= f(@)/0® (1 =p)(—f(@)f V(e )/O‘}.

1= (1 =ps)f*(e) [1 = (1 =ps) ()]

X

(3.10)

It is observed that as m increases, the computation becomes much involved. We will
give a recursive algorithm for the computation of g™ (a) which is needed in Corollary

3.1. Let

h(s) = s*[L = (1 —pg) f*(s)]- (3.11)
Using the formula
= Ep: (1;) u@ =) (3.12)
we obtain o
W) = o’1-(1 —Pf)f*(a)]
() = —a®(1=ps)f* V() +2a[1 = (1 = py) ()]
() = —a®(1—p)f*@ (@) = da(l = pp) f*N (@) + 201 = (1= ps) f*(a)]
WP (a) = —a?(1=p)f*P(a) = 2pa(l = ps) [P ()

—p(p—1)(1 = pp) [P (), p >3 (3.13)

Since we have g(s)h(s) = 1— f*(s), differentiating both sides and applying (3.12), we
obtain (p > 0)

X:: (?)g(i)(s)h(”_i)(s) — (),

From this, we obtain the following recursive algorithm to compute g™ (a):

(o 1— f*(a)
9 (e) Thia)
*(p) o p__1 p (Z) (0% (pfi) «

h(«)
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Thus, using (3.13) and (3.14), we can easily compute g™ " (a), hence p. from
Corollary 3.1.

3.3 The Expected Effective Call Holding Times

In the preceding section we discussed the probability for a call to complete.
However, this quantity does not address the time needed for a call to complete. It
is desirable to know how much time is needed for a complete call to finish and how
much time does an incomplete call spend using the resource (bandwidth) so that an
appropriate pricing scheme can be devised. In this section, we present a solution to

this problem.

Similar to the argument in [39], the density function for the effective call holding

time of an incomplete call that is forced to terminate is given by

0) = () [ RO =)0 =00 [ ft00n]
= (1729) [ka (1 —pp)* pf/ fe(te dt] (3.15)

1- 2 —
where p;, = 1 — p, — p. denotes the probability of a call to be incomplete and p, is
computed in the last section. In the first equation, the term under the summation is

the density that the call is forced to terminate after £ handovers.

Next, we want to find the Laplace transform of g;(z) from which the expected

value can be easily obtained. From (3.15), we have

(0 = [T e g = L2 [ 501 =) [ St
_ ]jo by Z/ [27T] /:+joo f,’:(s)estds’] efzt(]_ _pf)kfl {/too fc(tc)dtc:| dt

= Gobd = [iﬁ: (1—pp)t ] s [ [7 gy ar
T A [fz (1= FENFEI A —pf>k-1] s
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< |7 reore) d

— — Do pfn/ /H]oo loo 1-f(s) —= 2 (s)(1 _pf)]k1] o=

2pﬂr] 1

x { /t fc(tc)dtc] dt
- . ;pzj;r]pfn / /H]oo — s 1 —(1 —1pf)f*(s) e ds Mtoo fc(tc)dtc} dat
_ W—ppgn o> 1= () - {[7 et [T peodre] dt s

2p; ] o—joo S[1 — (1 —pg)f*(s
(3.16)

Similar to the argument in the last section, we have

%0 0 1 1 “(— 1
/ 6(s—z)t/ fc(tc)dtcdt — + / e(s—z)tfc(t)dt — f ( s+ Z) )
0 t 0

S —Z S —Z S —Z

Taking this into (3.16), we obtain

ein ML =po)py [orHi® 1— f*(s) filest+2) -1
g; (2) = 2p; ] /trjoo s[1 — (1 —pys)f*(s)] §—z ds. (3.17)
Since
lim f ( 5+ Z) — f*(l)(o)
§—2z S — Z ¢ ’

so s = z is a removable singular point ([35]) of the integrand of (3.17). Thus, the
poles of the integrand in the right half complex plane is those of f¥(—s + z), i.e

{z + p|p € 0.}. As in the last section, we obtain
Theorem 3.2.

A= po)py o A= )5 +2) — 1)
T=po—pe mer 55— 2L — (L—pp)F ()]

pPEOTCc

g9; (2) =

(3.18)

Now, assume that the call holding times are Erlang distributed with parameter

(m,«). Then f¥(s) = (a/(s+ «))™. Let

1)
1) = T @

(3.19)
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Then, from Theorem 3.2, we have

o

0520 g [

1 = po = pe s=#to 55—z
_ (@ = popy 91(5)
= —(=1) 3 e, (5—2)s— (z+a)m
_ mo &L= po)py . d™! m g1(s)
B (_1) (m — 1)!pi skglra dsm—1 [(S B (Z + a)) (3 — Z)[S — (Z + a)]m

(—1ym 1 &L o)y nnl.ﬁTii-[ s ﬂ

(m—1)lp; s—ztadsm=! —z
_ m—1 @11 — po)py g™ 1)
B (_1) ( — 1)'p stJra iz0 (S)
o _1ym—1 amn(l _po)pf . m 1-7)
= (=1 (m —1)!p; sl}z-i-a J‘H (5)

= (@il “”2( lywﬁdm”w+@

(m —1)!p;
(L= po)ps "~ (=)™ i)
— g Z+ o
pi ]z% (m—1- )" et
1 — Do m—1 _ ] .
_ (L= po)ps " ( ?4) I + ). (3.20)
Pi j=0 J:

Finally, we arrive at

Theorem 3.3. For a PCS network with Erlang distributed call holding times, the
Laplace transform of the density function of the effective call holding time of an

incomplete call is given by

g (2) = Z(_pop"iizo . Nz + a), (3.21)

the expected effective call holding time of an incomplete call is given by

popf ]—1—1
T, = — (@), 3.22
=S G =

and the variance of the effective incomplete call holding times is given by

— Po)Ps ]+2 — Do)Ps J+1
V= E E ()| . (3.23
1 —Po— Pe 1T (o) - 1 — Po — De = ) ( )
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Proof: (3.22) can be obtained by noticing that T; = —g:(l)(O). (3.23) can be proved
by the following relationship: Var(X) = E(X?) — (FE(X))? for any random variable
X.

Remark: In fact, from equation (3.21), we can easily find all moments of the effective
call holding time of an incomplete call, which is easily given by (let T;(k) denote the

kth moment)

Do pf ]+k
T;(k) = (-1 , k> 1.
(8= (R Sk g
When m = 1, the Erlang distribution is the exponential distribution. In this

case, we have
" n(1 —po)py
(2) =

i 1_po_pcgl(z+a),
and
n(l —po)ps (1) (1 — po)py
T; 9. '(0) =
t=p—p" TGl pali - (- p) ()
1— f*(e) psf(a) }
X + 3.24
R (e 32
This is the same as in [39], where a different approach is used. Using (3.8) in (3.24),
we obtain
1 *(1)
Ti=-+ __ i)
a  [1= )t = (1—=pp)f*(e)]

Since f*M(a) < 0 and 0 < f*(a) < 1, we have T; < 1/a, i.e., the expected effective
call holding time of an incomplete call is less than the expected non-interrupted call

holding time.

For m > 1, we can also give a recursive algorithm as before to compute g%p )(a)

which is needed in (3.22). Let

hi(s) = sl = (L —pp) f*(s)]- (3.25)

Then, we have



t
2 k k+1

Figure 3.2: The timing diagram for the effective call times of a complete call: the call

completes after £ handovers

W) = —a(l —pp) D)+ [1 - (1 - p) ()]
() = —a(l —pg)fP(a) = p(l —p)f" Ve), p=>2 (3.26)
and
O, -~ L=f(a)
gl ( ) hl(&)
() (@ p (v gi) o hgp—i) o
/P(a) = o ()+Ez_h1((2; (@)hi” " (a) (0> 0) (3.27)

Thus, using (3.26) and (3.27), we can easily compute g%pil)(a) (p =1,2,...,m),
hence T; from Theorem 3.3.

Next, we study the expected effective holding time for a complete call. The timing
diagram is shown in Figure 3.2, in which the call is completed when the portable is
in cell £'. t. represents as before the effective call holding time for a complete call. If
E=1,0<t.<t;whileif ¥ > 1,8 +to+ - +tpg <to<t;+ts+- -+t Let
k = k" —1, then we have

For k=0, 0<t. <t (3.28)

FOI"k‘>0, th+to+ o+ <t <t +to+ At (329)
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Using a similar argument in [39] (or a simple conditional probability argument), we
can obtain the density function g.(t.) of the effective call holding time of a complete
call is given by

gelte) = Ulte) + Wi(kc) (3.30)

where

De

Ulte) = (1 —po> [fc(tc) /00 (tl)dtl]; (3.31)

Wi(t,) = ( >l2fc / - () (1 —pp)ff(r)drdt|.  (3.32)

Ul(t.) corresponds to (3.28) and W (t.) corresponds to (3.29), where (1 — p,) is the
probability of nonblocking, (1 — py) is the probability of no forced termination. The
equation (3.30) can be derived from P(t. < z) = >32°, P(t. < z, k) where P(t. < z, k)
denotes the probability that the call is completed in cell £ + 1 and the effective call
holding time is not exceeding z. Rigorous derivation can be obtained following a

similar argument in [40].

We first find the Laplace transforms of U(t.) and W(t¢.). From (3.31) and the

Residue Theorem, we have

00 1 — o 00 00
U*(Z) = / e*ZtCU(tC)d ( P > / 7Ztcfc c (/ T(tl)dt1> dtc
0 0 te
1 — o B o+joo ]_ _
(o) [Fentogts ([ Do)
Pe 0 27T] o—joo
_ I —p, i /a—l—]oo 1—r (3) /00 fc(tc)e(zs)tcdtc> ds
De 215 Jo—joo 0

1 —po> L 21— £

— _ “(z —s)d
De 217 Jo—joo 52 Je(z = 5)ds
1—p, s —n(l— f*(s)) ,.
_ _< — )Res T gt (3.33)

Since
te

a0 [7 ] = gteo [ i = [7 s - o

0

= fk(tc) - fk(tc) * f(tc)a
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where * denotes the convolution operator, hence the Laplace transform of

Jo© Fie®) JoZy f(r)drdte is (fi(s) = fi(s)f*(5))/s = (1 = f*(5))fi(s)/s. From (3.32)

and the Residue Theorem, we have

W*(z) = / T e W (8, dt,

0

= o ne S [T [0 [T sl

Pe k=1
_ 1_p000 —2ztc L U+jool_f*(8) * ste
= ,;(1 —pf)ke fe f.(te) [27[]' /Ujoo — fi(s)e dsl dt,
(A =po)(A —py) ot otioce 1 — f*(s)
N 2Tpe] /0 felte /(T—joo s
X li fi(s)(1 —pp)F 1] e*ledsdt,
k=1
(A =p)X=py) > . rrico 1= f*(s)]"
) T OY e
X li[(l —pf)f*(S)]kI] e dsdt,
k=1
_ ol =p)(=pp) (2 . 7400 [1— f*(s)]°
N 2Tpe] /0 e« felte) /Ujoo l S ]

eledsdt,

T -p)f )
(1 —po)(1—py) otie [1— f(s)]? 1
N — /(, l S ] L—(1—=ps)f(s)

—joo
x / T et £ (1 ) dt dis
0
(L —po)(1 —py) /”j"" [1—f*(s))?

fi(=s+z)ds

T N EATRE)
SO (R N (B ) R
- TR (T O) KARRR

From (3.33) and (3.34), we finally obtain

Theorem 3.4. For a PCS network, the Laplace transform of the density function of

the effective call holding time of a complete call is given by

w0 = - (152 [y )

s=z+p S
pEoc

5 fi(=s+2)
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1= ()P f (= +2)
(L -p)f )] | (3.35)

Suppose now that the call holding times are Erlang distributed with parameter

(m, ) with Laplace transform f.(s) = (a/(s + a))™. Let

92(8) _ S — 77(18; f*(S)), (336)
D),
S i TR 837

Then, we have

sljg—sp — 77(13; f*(S)) fc*(_s - Z) - SZRZefa 92(8) (ﬁ)m
B m g2(s) _ (=)™ e
= (- SBze-Ea (s—(z+a))m™ (m—l)!g2 (24 ),
and
Res LTI fe(=s+2) (—a)™ 9:() __ _ (_a)m,gém*”(zjta).

R E) e ]

p€oc

From these and Theorem 3.4, we obtain
Theorem 3.5. For a PCS network with Erlang distributed call holding times,
the Laplace transform of the density function of the effective call holding time of

a complete call is given by

(=)™ 'a™(1 = p,) [g(m—l)

9:() = [ e+ A —png" e+ )], (3:39)

the expected effective call holding time of a complete call is given by

1= a0 = SU P ) (g @)] . (39)

and the variance of the effective complete call holding times is given by

V, = (_1):;’;1_0/:)(’1])6_ po) [gém-l—l)(a) + (1 . pf)ng§m+1)(a)]
—% (87 (@) + (1= py)ngd™ ()] (3.40)

67



Remark: In fact, all moments of the effective call holding time of a complete call can

be obtained from (3.38) and are given as follows: (let T.(k) denote the kth moment)

(=)™ o™ (1 — p,) [ (m+k—1)

Tk = o [ @)+ g™ @] k21

When m =1, i.e., the call holding times are exponentially distributed, we have

(L Gt O O

L9 (@) (1 - pr)gs ()]
(1 = po){a —nlafV(a) +2(1 - f*(a))]}

Per?
0= p)(1 = p)l = F(@)] (21 = L@ | iy, pefOle)
- (- p)F (@) { o T/ ()+1—0—pAPWJ

This is obtained in [39] using a different approach. This formula can be further
simplified using (3.8) as follows:

1—p,) [1 2(1 — f* 1—p,
R IR e a T | PR S

Pe a o el je!

" [1 - Py ] {2[1 —Ojj*(a)] + PO() + prf* () }

1—=pg)f(a) 1—(1=pp)f*(e)
_ l=po 1 g 2(1 — f*()) prf* ()
P {a all = (1—py)f*(a)] l « 1-n —pf)f*(a)]}

ofl- (= pf@]f  pao
X[O—FWD ps 0 (0) ]

_ 1-p, {1 ~pr(1 = (@) } (1= po)npy

o 1—(1—=pys)f(a)
1 (A =po)ps [(1 = (@) prf* V()
a7 pa [ @ +1—U—WVWJ' (341

It is observed from simulation in [39] that T, < - when the cell residence times are
Gamma distributed. Using this equation, we can prove this analytically for general
cell residence distribution. We want to show that the term [-] in the last equation of

(3.41) is nonnegative. Let

Ale) = [1 = fH@)][L = (L= pp) f* ()] + app f*P(a).
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Since f*(0) =1, A(0) = 0. Also, we have

d

—A(a) =2(1 = py)(1 = f*(a)[- ()] + aps fD () > 0,
where we have used that 0 < f*(a) < 1, f*"(a) < 0 and f*®(a) > 0. Thus, A(a)
is an increasing function, hence A(a) > A(0) = 0, from which we conclude that the
term [-] in the last equation of (3.41) is nonnegative. Thus, for any cell residence

distribution, the expected effective call holding time of a complete call is always less

than the expected call holding time.

When m > 1, the closed-form formula may be quite involved. However, as before,
recursive formulae can be easily developed for the computation of ¢ () and ¢{”' ().

For ¢ (ct), we have

a—n(l - f(a))

0
9" (a) = "
1 L+ nf*O(a) — 2095 ()
9 (a) = 0 ?
“®) () — 2paa? V(a) — — 1P
Pla) = nfP(a) = 2pagy () —pp—1)gy () o o (3.42)

a2

For g (), let h(s) = s2[1 — (1 — p;)f*(s)] as defined in (3.11), h®)(c) can be

computed as in (3.13), and

0 [1- f (@)
95 (@) h(o)
Py — 20050 () V@) 0) = 55 () (@)h ()

3 h(«) :
=t (3.43)

As observed earlier, we can analytically prove that for exponentially distributed
call holding times the expected effective call holding times for both a complete call and
an incomplete call are less than the expected call holding time. However, it is difficult
to analytically prove from the formula for m > 1 that the expected effective call

holding times for both a complete and an incomplete call are less than the expected
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call holding time 1/u. The following intuitive argument can be used to prove this:
the effective call holding times are just the “interrupted” call holding times, hence
should be “smaller” than the “non-interrupted” call holding times. We will verify

this observation in the next section.

3.4 Illustrations and Discussions

In this section, we present an example to show how to apply our results to analyze
the effective call holding times and attempt to draw some general conclusions. In this
section, we assume that the cell residence times are Gamma distributed with the
following density function and Laplace transform

_ () tem o ('
R EURACEI Ce

which have mean 1/n and variance V' = 1/(yn?). The call holding times are Erlang

distributed with the following density function and Laplace transform

(mu)mtm—le—mut i mip m
lt) = , t 2> 07 c = )
felt) (m—1)! 20, fe(s) 5+ mpu
which have mean 1/n and variance V' = 1/(mp?). We will investigate how the

probability of a call completion and the expected effective call holding times are
affected by some parameters such as the means and variances. In this section, we
use the commonly used average call holding time 1/1 = 1.76 minutes ([34]), we use

m = 2 when we vary v while we use v = 1.5 when we vary m.

As we mentioned earlier, the lognormal distributions has been proved to be a good
approximation to the wireline call holding time distribution ([3]). Statistically, both
the lognormal distributions and Gamma distributions (including Erlang distributions)
have the same capacity to approximate the measure data ([27]), the assumption of
Erlang call holding times seems to be reasonable replacement of the lognormal distri-

butions for the performance analysis. An important advantage of the Erlang/Gamma
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Figure 3.3: The probability of a call completion: varying v

distribution over the lognormal distribution is that the Erlang/Gamma distribution

has a simple Laplace transform, which is a desired property in our modeling.
We first consider the probability of a complete call.

Figure 3.3 shows the probability of a call completion vs. the inverse of the
expected cell residence time normalized by p, i.e., the mobility n/u, for different values
of the shaping parameter v in the Gamma distribution, while Figure 3.4 demonstrates
the variability of the call completion probability against the mobility n/u for various
values of the shaping parameter m in the Erlang distribution of the call holding
times. When 7 is fixed, the variance of the cell residence times (the call holding
times, respectively) is uniquely determined by the shaping parameter v (m). From

Figure 3.3 and Figure 3.4, we can observe the following properties:

a). The call completion probability p. is decreasing as the expected cell residence
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Figure 3.4: The probability of a call completion: varying m
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time (1/n) is decreasing. This is reasonable because for a fixed mobile route,
i.e., the distribution of the cell residence time is fixed, then the expected cell
residence time is fixed, and the longer the expected call holding time, the more
often the handovers happen, the more chance the call will be dropped. This
is equivalent to saying that for fixed call holding time pattern (or the fixed
expected call holding time), the probability of dropping the call is increasing as
the expected cell residence time become smaller, hence the probability of a call

completion is decreasing as the expected cell residence time is increasing.

b). The call completion probability is decreasing as the variance of the cell residence
times or the variance of the call holding times is decreasing (i.e., as v or m is

increasing).

c¢). When the expected cell residence time is large (i.e., when 7 is small), the effect of
the variance of the call holding times on the call completion probability is not
significant. This is why the call completion probability p. alone is not a good
evaluation measure for a PCS network, and the effective call holding times are

needed.

d). There is a significant difference between the p. for m = 1 and that for m > 1,
this may be due to the fact that the exponentially distributed call holding times

(m = 1) is memoryless.

Next, we study the effective call holding times.

Figure 3.5 and 3.6 show the expected effective call holding time of an incomplete
call. From these figures we obtain the following observations for the expected effective

call holding times of an incomplete call.

(1). T < 1,1ie., T; < 1/p. This implies that the expected effective call holding

time for an incomplete call is no more than the expected non-interrupted call
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holding time, which is consistent with the observation we made based on our

intuition.

(2). T; is decreasing as the mobility parameter n/u is increasing. This is intuitive
because when 7/ increases, the cell residence times decrease, more handovers
are undertaken, more often the call is incomplete, hence the incomplete call

holding times tend to be shorter.

(3). For small mobility 1/u, the expected incomplete call holding time is decreasing
as the variance of the cell residence times is increasing; while for large mobility

n/ i, this is reversed.

(4). T; is decreasing as the variance of the call holding times is decreasing for a
longer range of mobility. This relationship will be expected to reverse for very

large mobility (which may be not practical range).

(5). There is a big difference between the case for m = 1 (the exponential distribution
case) and the case for m > 1, which may be contributed from the memoryless

property of the exponential distribution.

(6). The variance of the effective call holding time of an incomplete call is decreasing
as the mobility is increasing; for small mobility n/u, it is increasing as the
variance of the cell residence times is decreasing, however, for large mobility
n/u, it is decreasing as the variance of cell residence times is decreasing. It is

always decreasing as the variance of the call holding times is decreasing.

Finally, we observe the expected effective call holding time of a complete call.

Figure 3.7 and 3.8 show the results for the effective complete call holding times.

We have the following observations.

(1). Tepn < 1,ice., Te < 1/p. This implies that the expected effective call holding time

for a complete call is no more than the expected non-interrupted call holding
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time, which is consistent with the observation we made based on our intuition.

. T, is decreasing as the mobility n/u is increasing. This is not intuitive.

. The expected effective complete call holding time T, is decreasing as the variance

of the cell residence times is decreasing.

. T, is increasing as the variance of the call holding times is decreasing.

There is a major difference between the case for m = 1 (the exponential
distribution case) and the case for m > 1, which may be contributed from the

memoryless property of the exponential distribution.

The variance of the effective call holding times is always decreasing as the
mobility 17/ is increasing; it is always decreasing as the variance of cell residence
times is decreasing; it is always decreasing as the variance of call holding times

is decreasing.

As mentioned in the introduction, the study of the effective call holding times

can support the provider’s billing activity. Lin and Chlamtac ([39]) investigated the

billing problem for the case when call holding times are exponentially distributed.

Similar conclusions can be drawn for our cases here. For details of this application of

our results to pricing strategies the interested reader is referred to ([39]).

3.5 Conclusions

All previous performance studies of PCS channel allocation assumed that the call

holding times are exponentially distributed. While this assumption can be justified

for existing cellular systems where the wireless calls are charged based on the lengths

of the call holding times, future PCS systems may exercise flat rate billing programs,

and

therefore a more general distribution is necessary for modeling the call holding
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times. In this chapter, we use a general distribution to model the call holding times
and derive general formulae for the probability of a call completion and the expected
effective call holding times of both a complete and incomplete calls. By specifying
the call holding time distribution to be Erlang, we obtain easy-to-compute recursive
formulae to compute the above performance metrics. Our results can be directly
applied to pricing strategies for the emerging PCS networks. In the next chapter,
we will generalize our approach to more general cases where call holding times are

distributed with more general distributions.
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Chapter 4

MODELING PCS NETWORKS
UNDER GENERAL CALL
HOLDING TIME AND CELL
RESIDENCE TIME
DISTRIBUTIONS

4.1 Introduction

In Chapter 3, we have studied the call completion probability and effective call
holding times mostly under the exponential or Erlang call holding times. As a result of
the new applications in the PCS networks such as information retrieving, on-line game
playing or Internet surfing, the classical assumptions on exponential or even Erlang
call holding times and cell residence times may not be appropriate for modeling the
new emerging integrated services in these systems. Not only does call holding time

distribution vary with the new applications, also the time a customer spends in a cell
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(the cell residence time) will depend on the mobility of the customer, the geographic
situation, and the handoff scheme used, and needs therefore be modeled as a random

variable of general distribution.

It has been shown (Lemma 3.9 in [30]) that any distribution of a nonnegative
random variable can be approximated by a sequence of the average summations of
Erlang distributions. Therefore, it suffices to use the mixtures of Erlang distributions

to model the call holding time distribution.

This chapter is the continuation of Chapter 3. Here we propose a general model
which assumes that the cell residence times have general non-lattice distribution, and
the call holding times are distributed with general distributions such as Gamma,
hyper-exponential and hyper-Erlang distributions, as discussed later. While the
advantages of such distributions are clear in that they reflect the emerging services,
applying these distributions to the model is a non-trivial task. This chapter shows
how to accommodate general call holding time distributions in previously proposed
analytic model in Chapter 3. The following general assumptions is repeated here for

convenience:

e The call arrivals form a Poisson process;

e The cell residence times are independent, identically distributed (iid) with non-

lattice distribution;

e The call holding times are independent, identically distributed (iid) with non-

lattice distribution.

Based on these assumptions, we obtain general formulae for the call completion
probability and the distribution (its Laplace transforms) of the effective call holding
times of both the complete and incomplete calls, from which expected effective call
holding times can be obtained. We derive computable formulae for the cases when

the call holding times are distributed according to Gamma, staged exponential or
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Figure 4.1: The timing diagram for a forced terminated call at kth handoff

Erlang, hyperexponential and hyper-Erlang distributions. As shown in ([39]), the
analysis of the call completion probabilities and effective call holding times can provide
the necessary guidelines for network performance evaluation tuning and importantly
designing billing schemes in the future PCS networks ([3]). We briefly discuss a
few billing rate (service charging) planning using the call completion probability and

effective call holding times.

4.2 Call Completion Probability

In this section, we study the call completion probability. Our previous work ([39]
and [12]) obtained formulae for the call completion probability for a PCS network
with a general residence time distribution and Erlang (exponential) call holding time
distribution. Here, we give further results for cases when the call holding times have

other distributions.

We first consider the effective call holding time ¢ for an incomplete call. Figure
4.1 illustrates the timing diagram for the call holding time, 77 is the time that the
portable resides at cell 1, and ¢; (i > 2) is the residence time at cell i. According

to our assumptions, 17, ts,...,t, ... are iid. Let ¢; have non-lattice density function
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f(-) with the mean 1/n and f*(s) be the Laplace transform of f(-) (we will use * to
denote the Laplace transform following the tradition [32]). Suppose that a call for
the portable occurs when the portable is in cell 1. Let #; be the interval between the
time instant when the call arrives and when the portable moves out of cell 1. Let
r(t;) and r*(s) be the density function and the Laplace transform of ¢; distribution,

respectively. From the renewal theory ([32]), ¢; is the residual life of the cell residence

/ (4.1)
[1 = f*(s)] (4.2)

Let t = t; + to + -+ - + t; be the effective holding time, and fi(¢) and f;(s) be its

time of the portable in cell 1, so we have

r(t) =

r*(s) =

mldd

density function and Laplace transform. Since ¢, 1, ..., are independent, it is easy
to derive
k
* * — /’7 * * -
fi(s) = Blexp(=s 3 _t)] = r*(s)[f ()" = ~(1= f* (o) [ ()" (4.3)
i=1

Let p, be the probability that a new call attempt is blocked (i.e., the call is never
connected), p. be the probability that a call is completed (i.e., the call is connected
and completed), p; be the forced termination probability or the probability that no
radio channel is available when a handoff call arrives. Then the probability of an
incomplete call (i.e., the call is connected but is eventually forced to terminate) p; is

1 — p, — pe, which is given by

topo—pe = ST [TQ-nh0) 1= ) pftrret)

= S0 0=y [T Rt ] e} 1)

k=1
where f.(t.) is the density function of the call holding times. In last chapter, we have

obtained
o all—pdpy 1) files) -1
1 —po—pe 277 / oo 8[1 _ (1 —pf)f*(S)] S d
_ 1 porioo (1= f*(s))(1 = fi(=3))
= —(1 —po)pfﬁj /Ujoo = (L=p)f () ds. (4.5)
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Since f*(s) has no poles in the right half complex plane, [(1 — p;)f*(s)| < 1.
Let 0. denote the set of poles of f*(—s) in the right half complex plane (i.e., —o. =
{—z|z € 0.} is the set of poles of f*(s) in the left half plane). In Chapter 3, we have
obtained the call completion probability for the case when the call holding times are
Erlang distribution. Next, we study other cases when the call holding times have

other distributions.

Assume that the call holding times are Gamma distributed with the following
density function

, v>0 (4.6)

where 7 is the shape parameter and o = «yp is the scale parameter. This density has

the following Laplace transform

s = () (4.7)

S+«

Substituting (4.7) into (4.5), we obtain

1 /a+joo (1= f*(s)(1 = (af(—=s+ a))”))d& (4.8)

L=po—pe=—n=popsg = [ [ — (L—ps)f*(s)]

In order to evaluate this integral, we need the following lemma.
Lemma 4.1. Let « > o > 0 and R(s) is analytic on C, = {s|Re(s) > o} (Re(")
denotes the real part) with R¥(s)s — 0 (i = 0,1,...,[v]) as s = oo in Oy (|7]

denotes the integral part of « for any positive real number). Then, we have

o R (a4 5)
o oy T (7—1)(7—2)---(7—L7J)/0 7=l

o+joo _ p—J2my
/ e R o L-e ds,  (4.9)

where (y —1)(y—=2)---(y—|v]) =1 when 0 < vy < 1.

Proof: If v is not an integer, then s = « is a branch point of the integrand ([35]).
Let us cut the complex plane on the real axis from s = « right to the oo as shown
in Figure 4.2, where Cp = {s = 0 + Re’’|0 < 0 < 71/2, 3n/2 < < 2r}, C, = {s =
a+ pel?|0 < 0 < 2r}, I = {s|Im(s) = 0} and Iy = {s|Im(s) = 27}. In the domain
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Figure 4.2: The integration contour and branching cut
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enclosed by the contour 0 — joo — o + joo = Cr — I} = C, = ly — Cp, the

function R(s)/(s — «)? is analytic, hence from the Residue Theorem ([35]) we have

([ f [+ f)

from which we obtain

/U(:;R (SR_(‘Z)st = — </CR +/l1 —l—/lz +/C,,> (8]%_(2)7618. (4.10)

Since limgecy,, ryoo R(s)s =0, we have

=0,

lim R(s)

ds = 0.
R—oo Jop (5 — a)’Y

On the line Iy, (s — a)” = |s — a7, while on [y, (s — ) = |s — a|?e’*™. From (4.10),

by letting R — oo, we obtain

/”+j°° R(s)

o—joo (5 —a)7

00 y 2 . . . 00 R
= / R(s) ds — — - R(a+ pei?)e 10—10qp — e’ﬂm/ () ds
atp (s — )7 /ﬂ‘ atp (s — )7
y 2 . .
- e™I2m) / 7 7] - / R(a+ peyﬂ)e—J(v—l)ﬂdg
atp (s — ) P71 Jo
— —j27r'y Oé + S _ ’;771 2 R(a + peja)e—j('y—l)ﬂde
p P

_ (1—e’j2“7) R(a + s) 1‘oo / a+s gsl — J
1)s7— —7+1 s7-1 prt

1 2w
X | ———= Ra+ﬂe]96m 1o +7/ RY (o + pe!”)e 70721 dp
l TeEEy ) 5 J(y=1) Jo ( )
_ 1= e —i2my /oo RY (o + S)ds B J /27T RO (a + peif)e=i0-204g
(v-1 J §771 (v =1)p=2 Jo
]_ — 67.7.27‘”7 /00 R(L’YJ*l) (a + S)d
= S
(v=DOr=2)--(v=l+1 ) b
j / 7RI (o 4 pei®ye i1
_ + pe??)e do
(=D =2)-- (v = ]+ D0 ( )
]_ — 67.7.27‘”7 /OO R(LWJ)(Q _|_ S)
B (O N O A R R
jpl—(v—m)

2 . .
N0 DT et
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1 — e—J2my /oo R (a + s)
(Y=D(y=2)--(y=1D) o s

from which the lemma is proved.

ds (letting p — 0)

Remark: If v is an integer, the above derivation can be reduced to the well-known
result from the Residue Theorem. In this case, s = « is no longer a branch point but

a pole with multiplicity v, and we have

]_ — 67]‘2”7 /OO R(LWJ)(Q _|_ S)
(y=1-(v=17]) Jo 5171
1 1 — ¢ 92

_ ot 7/°°R<m> d
(v =Dt v — ] Jo (+ 5)ds

- j2m (y—1) o _ j2m (y=1)

= (7_1)!R7 (a+s)‘0 ——(7_1)!R7 (o),

from which we can conclude that Lemma 4.1 gives the same result from the Residue

ds

Theorem given in Chapter 3.

Now, we are ready to give an expression for p.. Let
9(s) = LS :

s {1 = (1 =py)f*(s)}

Note that g(s) is analytic on C, and lims_, g(s)s = 0 on C,. In fact, g(s) satisfies

(4.11)

all conditions in Lemma 4.1 and
o+j00
/ - g(s)ds = 0.
o—joo
Taking this into consideration in (4.8) and using Lemma 4.1, we have
otjoo (1 — f* 1— — v
pe= (1= py) {1 p 2 7 (L PN (o (s +a)) ))ds}
o—jo0 s*[1 = (1= pg)f(s)]

_app(=a)? e L= fr)|[L/ (s — )]

: /a—joo 32[1 — (1 —=pg) f*(s)] ! }
_mpg@?e™ ki g(s)

| / o }

—joo (85—«

{
{
= (1—po){1_ "Pfa”em(l—e 72m) / gl a+sd}
{
{

2mi (= (- 2) ol
npra’ eIm™ — eI™) gD (a +5)
1 - / ds
m(y=D(y—=2)-(v— MJ
npsa’ sin 7r7 g M (a+ s) }
/ ds ;.
m(y =1y —2)

sT— [v]

sT— [v]
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Thus, we obtain

Theorem 4.1. For a PCS network with Gamma distributed calling holding times,
the probability of a call completion is given by

np ) sin my /OO gD (a +s) ds} . (1.12)
0

p"’:(1_po){1_W(v—l)(v—Q)---(v—M) s7=07]

Remarks:

(1). When 7 is a positive integer, the Gamma distribution becomes Erlang distri-

bution. In this case,

sin 7y
7= 1]
From (4.13) and (4.12), we have

Pe = (1_po) {1_(_1)7ﬂ 009(7)(044—8)618}

— meosmy = m(—1)7 (4.13)

(v=1! Jo
(=)"mps (-
= (1-p){1+——L 214070
1= {1+ LB @),
This equation gives the same result obtained from the Residue Theorem in

Chapter 3.

(2). The derivatives g”)(a + s) can be computed using the recursive algorithm
developed in Chapter 3, and the integral in the theorem can be computed
numerically either by approximation or the residue theorem if the poles of g(s)
(i.e., its analytic continuation) are easy to find (one special case is that when

g(s) is an rational function). This detail will be left to the reader.

If the call holding time has such a distribution that its Laplace transform f7(s)
has no branch points but has possible isolated poles, then from the Residue Theorem

we can obtain in Chapter 3

Theorem 4.2. If the Laplace transform of the call holding time distribution only
has isolated poles in the left half of the complex plane, then the probability of a call
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completion is given by

o (=) (=)
pe = (1 —p,) {1 + npfpgc Res 2= —pf)f*(s)}} , (4.14)

where Res;_, denotes the residue at the pole s = p. In particular, when f(s) is

rational function, then (4.14) is valid.

In last chapter, we have obtained the formula for the case that the call holding
times are Erlang distributed. It is well-known ([32]) that the Erlang distribution
can be obtained by a series of independent, identically distributed random variables.
By serial-parallel stages, a large number of general distributions can be obtained
from exponential distributed random variables ([32]). It is easy to observe that when
f¥(s) is a rational function, then Theorem 4.2 can be easily applied to find p.. The

distributions obtained by the method of stages belong to this class. We will discuss

some of the important cases next.

Let the call holding times be distributed according to the r—stage exponen-
tial distribution (the generalized Erlang distribution) with parameters puy, po, .. ., fir

(which are distinct) whose Laplace transform is ([32])

- () () () e

A random variable with this distribution is in fact the summation of r exponentially

distributed random variables with the parameters jy, pto, ..., jt-. From this, we have

Corollary 4.1. For a PCS network with r—stage exponential distribution of distinct

positive parameters jiq, jio, - . ., [y, the probability of a call completion is

pe=(1—po) {1 + (—1)’"77pf2r: (H ] ) mg(ui)}- (4.16)

i=1 \jri Hi — Hj

Proof: From Theorem 4.2, we obtain

e = Qom {Ur Oy S e
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g(s)py - -+ iy }
§—p) (s — pr)

= (1-p,) {1 + (—1)’"77pf; (Jl;[l Mi’fﬂj) uig(m)} :

This completes the proof.

= (l—po){l—l—( nprRes(

Remark: Corollary 4.1 is also valid when py = ps = +++ = p, = @, i.e., the Erlang
distribution, in which case a limit has to be taken. In fact, we only need to show

from Chapter 3 that

Jim, i (H Mju ) 1ig(pi) = a(rfl)!- (4.17)

i=1,...,r i=1 \j#i Hi

We use the induction to prove this. For r = 1, the left hand side (LHS) of (4.17) is
equal to the right hand side (RHS) of (4.17). Suppose that it is true for r — 1, then

for r, we have

LHS of (4.17)

r—1 fr—1
. . 4
Hr—rex {z!f,l_i?l (7,:2; (jl—[;éz Hi — /‘LJ) Hi — Hr ]1_[1 Hr — /‘L )
- o™l Jr2 g(l.),ulr o r—1 )
= M1T1£)na { N <x — ) e + o prg(pr) ¢ (assumption)
arfllul r—2 r—292 1 (@) ) arfllul
= l ! (T‘—Z—l) r -
o { (r=2)=\ i T — ly _— (a) + (b — )71 9(pr)
2

B . o =2 (n_ 9 B ii g(r 2—i)(a) a’
- i {75 v g
g(p) = 28 £ 0 () (1, — )

= ulrigla (Iur — a)i—l
9" V(o)
= a'=——— = RHS of (4.17) (Taylor expansion)

(r—1)!
This proves (4.17).

Assume now that the call holding times are distributed according to the r—stage

Erlang distribution with distinct parameters
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[1, f2, - - - i and positive integers my, mo, ..., m, which has the following Laplace

e (o N e N e \T
fC(S)_<s+u1> <s+u2> <S+u,«> : (4.18)

This distribution can be obtained from the sum of r independent Erlang distributed

transform

random variables with parameters (m;, ;) (1 =1,2,...,7).
For this case, we have

Corollary 4.2. For a PCS network with r—stage Erlang distributed call holding

s=pui } '

(4.19)

times, we have

pe= (1= po) {1 + (=1) 2= i, (H ul—"i> Z ;’Z?Z ( a2 >

i1 i=1 [Tjzi(s — )"

Equation (4.19) is specific for serial stages. For r—stage parallel exponential

distribution (the hyperexponential distribution) with the parameters p, ...,y and

ai, ..., with the following Laplace transform ([32])
. r Ml r
fi(s) = o , o; >0, o; = 1. 4.20
(5) ; Py ; (4.20)
We have

Corollary 4.3. For a PCS network with hyperexponential distributed call holding

times, we have

pe = (1 —po) {1 — npy Z Oéiuz-g(uz-)} : (4.21)

i=1
More general cases can be obtained from serial-parallel stages. One important
case ([32]) is the hyper-Erlang distribution with the following density function
r 1

mipi(mgpat)™
) =3 misit 4> () 422

with the following Laplace transform
* d T g "
fi(s) =2 <7> . (4.23)

Pt 5+ mi;
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This distribution is obtained from r parallel Erlang distributed random variables.
It is shown ([30]) that the hyper-Erlang distributions can approximate any general

(non-lattice) distribution.

Corollary 4.4. For a PCS network with hyper-Erlang distributed call holding times,

we have

pe= () {1ty D S o (a2

One general and interesting case obtained by the method of stages is the distri-
bution with Laplace transform
R . M Hig
ao=xed(H5)
A similar result for the probability of a call completion can be derived, details are left
to the reader. For the method of stages, the interested reader is referred to [32]. For

the computation of ¢ (a) needed in the above, a recursive algorithm is constructed

in Chapter 3.

4.3 Expected Effective Call Holding Times

In the preceding section we discussed the probability for a call to complete. To
fully characterize the performance of a PCS network it is necessary to also know
the expected elapsed times for the complete and the incomplete calls (their so-called
effective call holding times, respectively). In Chapter 3, we have presented a few
general results for the effective call holding times of complete and incomplete calls,
in particular for the case when the call holding times are Erlang distributed. This

section provides new results for other interesting cases.

We first consider the effective call holding time of an incomplete call. As in

Chapter 3, the density function for the effective call holding time of an incomplete
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call that is forced to terminate is given by

gi(t) = (pz> [ka (1—po) (1 —pp)*- pf/ fe(te dt]

() S o [riem]

1- Pc —
where p;, = 1 — p, — p. denotes the probability of a call to be incomplete and p, is
computed in the previous section. In the first equation, the term under the summation

is the density that the call is forced to terminate after & handoffs.

We want to find the Laplace transform of ¢;(z) from which the expected value

can be easily obtained. As in Chapter 3, from (4.19), we can obtain

ey _ ML= po)py [otioe 1—f*(s) fi(=s+2) -1
9:(2) = 2p;m ] /trjoo s[1 = (1 —pg)f*(s)] s—2z ds. (4.26)
Since
fim 25D L e,
S—z S — Z

s = z is a removable singular point ([35]) of the integrand of (4.26). Thus, the poles of
the integrand in the right half complex plane is those of f*(—s+z2), i.e., {z+p|p € o.}.

Let

1— f*(s)
s[1 = (1 =pg)f*(s)]
Assume that the call holding times are Gamma distributed as in (4.6) and (4.7).

hi(s) = sg(s) = (4.27)

Taking (4.7) into (4.26), choosing o to be greater than the real part of z and using

Lemma 4.1, we have

gz = MLopdpy e 1of'6)  (of(csteta)t o,
2pZ7T] o—j00 3[]—_ (]-_pf)f*(s)] §—z
1 — R o—2z+jo0 — T -1
LRy T, (. Gl 2,
2pz7'('] o—2—J00 S
1 _ og—2z+700
_ 77( po-)pf J h1(8+2) . ( Oz/(S—l—@)) ds
2pZ7T] 0—2—j00 s
_ 1@ = po)py (=) e (s + 2) /s
2p;m] o—z—j0o0 (5 - 04)’y

] ] dlv] hi(x+
n(l — po)pra?el™ (1 — e772™7) /OO dz ] ( I(Z z))
) Jo

2pimj(y — Dy —=2)--- (v = [7]
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Using the well-known formula
p . .
= (? ) uy®=i), (4.29)
i=0 \"
we obtain the following
Theorem 4.3. For a PCS network with Gamma call holding times, the Laplace
transform of the density function of the effective call holding times of an incomplete

call is given by

S.

e (=)In(1 = po)pra”|y]! sin(my) o (—1)i poo hgi)(s + 2+ )
8 [ e P Y A Pt T
4.30

The expected effective call holding time of an incomplete call is given by

T, = ds.

(=1)I+1n(1 = p,)pra? | y]!sin 7T’)/ m /00 h (s + )
TP =)=~ =2) (= 1)) 25 0 (s +a)lmitts-bl
(4.31)

Here, (y —1)(y—2)---(y—|v]) =1 when 0 < v < 1 and the limit will be taken for
sin(my) /(v — |v]) (= 7(—1)” when 7 is an integer).
Proof: Since /™ (1 — e772™) /(2j) = sin(7), from (4.28) we have

£<M>:Xp:(—l)i®ﬂ%h( Ne+2), p=11).

P
dz x = 0

Remark: When + is an integer, the Gamma distribution becomes the Erlang distri-
bution, the above result will reduce to our previous result obtained in Chapter 3. In
fact, from (4.28), when + is an integer, we obtain

n(1 — po)pra? cos(my) [ d <h1(s + 2+ a)> s

(1 —=po—p)(y =1 Jo dsY s+«

(1 = po)pra? cos(my) A" (hi(s + 2+ ) >
(1=po —pe)(y = 1)! ds77! s+

— (<1 n(l = po)pra” A <h1(8 2+ a)>

9; (2)

(1 =po—pe)(y — D)dsr1 s+a s=0
nl—popfz oz)l
1_po pczo

9z +a).
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If f¥(—s) does not have any branch points in the right half complex plane, then
the Residue Theorem can be used to obtain certain computable results. In fact, from

(4.26) we have the following general result (see Chapter 3).

Theorem 4.4. If f*(s) only has isolated poles in the left half of the complex plane,
then

= pry (1= ) (=5 +7)
i ey DL S e | s e T

In particular, when f7(s) is rational function, then (4.32) is valid.

(4.32)

If the call holding times are r—stage exponentially distributed, we have the

following result.

Corollary 4.5. For a PCS network with call holding times r—stage exponentially
distributed with Laplace transform as in (4.15), then

(—1)r+1 (IT7—y i) m(1 — po)Pf d hi(z + ;)

9i(2) = : 4.33
( ) 1— Po — De i=1 Hi H];éz(ﬂz - N]) ( )
and the expected effective call holding time of an incomplete call is given by

—1)" (T, 1—p, r h(l) :

Proof: By taking (4.15) into (4.32), we obtain

1—p, — pe i=1 Mi Hj;éi(ﬂi - Mj)'
* 77 - D pf

Do — pcpegsz+p5 H( S+Z+,U/7,>
(=)™ (T pa) n(1 — hi(s)/(s — z)
Res
1 —po — pe z;=+mH’" (s = (2 + )
(D)™ (ITizy ) 1(1 = po)pr &~ Tl + i)
1-— Po — Pc i—1 Mi Hj;éi(lu’i - :U’j),

this proves (4.33). (4.34) can be obtained by T; = —g;k(l)(()). This completes the

proof.
For r— staged Erlang distributed call holding times, we have the following result.

Corollary 4.6. For a PCS network with call holding times distributed according to
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r—stage Erlang distribution as in (4.18), we have

gi(e) = ) n( = polpy g~ 1 ! ( ha(s +2) >
' (—1)1"'2::1 mi(l — Do — pc) i1 (m, — 1)’ dsmi=1 \ s Hj#-(s — Mi)mi s:m’
(4.35)
and the expected effective call holding time of an incomplete call is given by
T AV VTS A S Sl (R )
l (-1 )HZl:Iml(l — Do — Pe) i=1 (m; — D)l ds™ =t \ sTTjz(s — i) s=pu;
(4.36)
Proof: Taking (4.18) into (4.32), we have
. (1 —po)py a "
“(2) = Res
9i(2) = 1—p,— pcp;s z+ps H(—S—i-z—i-,uz)
(=D (T ) (L — Z h(s)/(s — 2)
1_po_pc 5= Z+ul —1(8_(Z+,U/z))
(D)2 (I ) (1 - Z
1 —po—pe i=1
dmi—t < hi(s)/(s — 2) )
X m;—1 m;
dS v H]#(S — (Z + ,Uq,)) 4 P
o (I ") n—popy 1 d™T! ( hi(s + 2) >
(—1) 2™ (1= py — pe) = (ms = D™t \s Tl — )™ )|,

This proves (4.35). (4.36) can be proved by T; = —g;(l)(O).
For hyperexponentially distributed call holding times, we have

Corollary 4.7. For a PCS network with hyperexponentially distributed call holding

times (as in (4.20), we have

1 —po
9:(2) = Z(_ipif > aihi(z + i), (4.37)
¢ =1

and the expected effective call holding time of an incomplete call is given by

77 — Po pf
T = a;hy (i) 4.38
1 - Po — Pe Zz; ( )

Proof: Taking (4.20) into (4.32), we obtain

iz = TP 5 e

1_po Pe pEoc 5= z+p5

5 (5
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1 —po : h ifbi
_ p)prRes 1(s)  aip

L =po—pc i s=ztui § — 28 — (2 4 1)

1
= 777( Po)Pg Zalhl Z+,U/z)
1_ =

from which the proof can be easily completed.
For the hyper-Erlang distributed call holding times, we have

Corollary 4.8. For a PCS network with hyper-Erlang call holding times, we have

* po p - My g
i) = ML 5 o T (]—,)h‘ (= + maps), (439)
C j=1 j=0 :

and the expected effective call holding time of an incomplete call is given by

m;— PAY I
S (Gl 2015 SRS Sl T UGS (4.40)
1 pO pC =1 ,7 0 ]'

Proof: Taking (4.23) into (4.32), we have

m;
. ,7( Po)Ps 5) ) < M fb;
. pu— R 1
9i(2) L —po— pcp%;cs”p( >z " ( S—i—z—l—mlm)

_ond- popfz Res ( s)>’" — 1)y (m )™

1 —po—pe i STEtmik \ s — 2z Z + ml,u))

e o () D™
- 2R ( )(

L —po — pe = s=tmani \ s — 2 — (2 + myp;))™
_ 77 — Po pf Z ye? Tnzlﬁz)mZ dmi—t <h1(5)>
1-— — Pec i1 1) ds™i=t \s —z s=z4+m;;
_ 77 — Do pf Z az(mzﬂz)ml dmi=t hy (S + Z)
1 —po—pc = —1)! dsmi—1 s P
_ 77 — Po pf Z az(mzﬂz)
]' - pO pc i=1 i - ]_)
m;—1
: m; — 1 (4 1
5> ( . )<s YO T
j=0 j S=T1M4 [bg
m;—1
_ n(l = po)ps Za 3 (—mip;)? B )(Z+mzuz)
1 o — Pec i=1 j=0 ]'

from which the corollary can be proved.

Next, we study the expected effective holding time for a complete call. The timing
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t
2 k k+1

Figure 4.3: The timing diagram for the effective call times of a complete call: the call

completes after k£ handoffs

diagram is shown in Figure 4.3, in which the call is completed when the portable is
in cell ¥'. As before, t. represents the effective call holding time for a complete call.
Ifh'=1,0<t, <ty whileif & > 1, &, +tg+ - +tp  <t, <ty +tg+- -+t
Let £ = k' — 1, then we have
For k=0, 0<t.<t (4.41)
For k>0, ty+ty+ -+t <te<t,+to+--+tpss (4.42)

Using a simple conditional probability argument, we can obtain the density function

ge(te) of the effective call holding time of a complete call is given by
ge(te) = Ul(te) + Wi(t.) (4.43)

where

Ut,) = (1_p0> [fc(tc) /t Oor(tl)dtl], (4.44)

De

wit) = (1;6“’) Li;fc(tc) /Otc /t:fk(t)(1_pf)kf(7)dmt . (445)

Ul(t.) corresponds to (4.41) and W (t.) corresponds to (4.42), where (1 — p,) is the

probability of nonblocking, (1 — py) is the probability of no forced termination. The
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equation (4.44) can be derived from P(t. < z) = Y32, P(t. < z, k) where P(t. < z, k)
denotes the probability that the call is completed in cell £ + 1 and the effective call
holding time is not exceeding z. Rigorous derivation can be obtained following a
similar argument in [40)].

The Laplace transforms U*(z) and W*(z) of U(t.) and W (t.), respectively, are

given below (see Chapter 3).

v = (127:199 /-j:o - n(ls; PO gee = syas, (4.46)
oy = M=p)(A=py) o =P
W*(z) = 2P /Ujoo $2[1— (1 —pf)f*(s)]fC( + 2)ds. (4.47)
Let
) = SIS ) .
A=fGr _1-10)
h3(8) 52[1 _ (1 —pf)f*(s)] - 2 9( ) (4.49)

Assume that the call holding times are Gamma distributed with the Laplace
transform (4.7). Then, from Lemma 4.1 we have the Laplace transform of the density

function of the effective call holding time of a complete call

) = UE )
— (1—290) /:ﬂoohg(s)f:(z—s)ds

27pe) —joo

N (77(1 —po)(1 —pf)> /:”oo ha(s) £ (s + 2)ds

27Tpcj —joo

= (Sl [ el 40 o) s )

27rpcj '*]‘OO

B - (2
_ (=p)(=o) /"“‘” ha(s) + n(1 —py)hs(s)

27p.j T—joo (s —z—a)
_ (L=poare’™ /””joo ha(s + 2) +n(1 — py)hs(s + 2)

27pe] o—z—joo (s — )7

(1 —p,)a”el™ (1 — e772™7)

2mpej(y = 1)(v = 2) -~ (v = 7))

ds

ds
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ds

y /00 W (s + 2+ a) +n(1 —p)h (s + 2 + )
0 s7=1]
(1 — po)a sin(7m7y)
me(y = Dy =2) -+ (v = 7))

y /00 hth)(s +z+a)+n(l-— pf)hgm)(s +z+a)
0

ST~ 7]

ds,

from which we obtain

Theorem 4.5. For a PCS network with Gamma distributed call holding times, we

have

“(2) = (1 — po)a sin(7m7)

Jel2 ey —1)(v—2) - (v - [7])

« [ W (s + 2+ a) + (1 —p)hf (s + 2+ a)
0

s7— [v]

ds,  (4.50)

and the expected effective call holding time of a complete call is given by

(1 — p,)7 sin(77)
T. = —
m™e(y =Dy =2) - (v = [7])
[ o) = e
0 Faaaiied

ds. (4.51)

Remark: When 7 is a positive integer, then Theorem 4.5 reduces to the result

presented in Chapter 3 for the case when the call holding times are Erlang distributed.

When f*(s) does not have any branch points and has only finite isolated poles,
an application of the Residue Theorem to (4.46) and (4.47) leads to the following

result obtained in Chapter 3.

Theorem 4.6. For a PCS network, the Laplace transform of the density function of

the effective call holding time of a complete call is given by

gi(z) = _lope {Z Res ho(s)fi(—s+2) +n(1—pr) > Res hg(s)fc*(—s+z)}

De S=z-+p s=z+p
(4.52)

pEoc pETe

If the call holding times are r—stage exponentially distributed, then we have
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Corollary 4.8. For a PCS network with the r—stage exponential call holding times
(see equation (4.15)), the Laplace transform of the effective call holding time of a

complete call is given by

— 1) (T ) (1= po) < h ; 1 —ps)h ;
g:(z):( ) (Hl—l/"t)( p)z 2(Z+M)+77( pf) 3(Z+:U’), (453)
Pe i=1 H]#Z(/’LZ - :U’])
and the expected effective call holding time of a complete call is given by
r r r (1) (1)
1 , (1 — : 1 :
7, — (ZD (i ) (1= po) 3 hy " () + (1= py)hs (i) (4.54)

Pe pat [Tjzi (s — 15)

Proof: This and the following few results can be proved as those for the effective call
holding times of an incomplete call and are left to the readers.

If the call holding times are r—stage Erlang distributed, then we obtain the

following result.

Corollary 4.9. For a PCS network with call holding times distributed according to
the r—stage Erlang distribution (4.18), then

(o) = - L=po) g~ Tl ! <h2(3 +2) + (1 — py)hs(s + Z)>
¢ pe(—1)2izi ™ = (m; — 1) ds™i=! T1jzi(s — ) s:m’
(4.55)
and the expected effective call holding time of a complete call is given by
oo (mpe) T dm (h(s) (1 —py)hs(s) (4.56)
T - T\ Al )l

If the call holding times are hyperexponentially distributed, then the following

result can be obtained.

Corollary 4.10. For a PCS network with call holding times distributed according

to hyperexponential distribution, then

G(2) = 2P S oz £ )+ 01— pha(z 4 )}, (457)

¢ =1

and the expected effective call holding time of a complete call is given by

r

1_po
= 3 aupu{hy” () + (L = p)hs” (1)} (4.58)
c =1

T, = -
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Finally, for the call holding times are hyper-Erlang distributed, we have

Corollary 4.11. For a PCS network with call holding times distributed according
to hyper-Erlang distribution as in (4.22), we have

* 1- Do d mg i m;— i—
01(2) =~ 23 ol D o g (1 = ) e )
C =1 (3

(4.59)
and the expected effective call holding time of a complete call is given by
1- Po d Ly m;
7, = L0 5 I 0 g + 01 = )} (4:60)
c =1

Remarks:

(1). Although we only gave the results on the expected call holding times of a
complete or an incomplete call, it is apparent to obtain their variance and

higher moments from their Laplace transforms.

(2). Most results involve the computations of certain functions like g(s), h1(s), ha(s)
and h3(s) at certain points. The recursive algorithms developed in Chapter 3

can be used to facilitate the computations.

4.4 Service Charging Planning

In Chapter 3 and this chapter, we have found analytical expressions for the
expected call holding times for both a complete call and an incomplete call. From
these two quantities, we can easily compute the expected call holding time, i.e., the
expected time of service usage for a call (either complete or incomplete). In this
section, we want to show the usefulness of the effective call holding time for a complete
call and the effective call holding time for an incomplete call. T show that these two
quantities are not only of interest in their own rights in performance evaluation, but

also very useful in the service charging planning.
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PCS networks are targeted to provide integrated services radio links, the usage
of the networks may be charged differently. It is not fair to charge the users for the
incomplete calls the same rate as for complete calls, it is also not fair for service
providers to charge the same rate for long incomplete calls as for short incomplete
calls. In the last, because there are no analytical solutions for the effective call holding
times for a complete call and an incomplete call, in the cellular rating systems there
are no differentiation between a complete call and an incomplete call, and the same
rate is used for the air time, which can be determined by the effective call holding
time. Now, we can differentiate the air times for complete calls and incomplete calls,
different rating systems can be developed. In the following, we discuss a few possible

service charging (rating) systems for PCS network services.

4.4.1 Flat Rate Planning

The simplest rating planning will be the flat rate planning, which applies a flat
rate to all calls (either complete or incomplete). This planning is easy to implement
and easy to advertise, the determining factor for the charging rate is the expected

effective call holding time

T =
1_po 1_po

Tc - 257,7—; + ﬁcTca

where p; = pi/(1 — p,) and p. = p./(1 — p,). Noticing that p, + p; + p. = 1, we have
Di + pe = 1. In wireline networks, there is no forced termination, p; = 0, the flat rate
planning is reasonable. Obviously, when the call dropping probability is sufficiently
small (this is the case when either call traffic is light and mobility is comparably low
or the number of channels are more than enough to support all incoming calls), then

the flat rate planning is useful.
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4.4.2 Partial Flat Rate Planning

The second planning is to use the partial flat rate. Due to the increase of the
number of users and the mobility of users, the cell traffic will tend to increase, hence
the effective call holding times for incomplete calls may be significant. It will be
reasonable to use different rates for complete calls and incomplete calls. Let C; and
C. denote the rates for an incomplete call and a complete call, respectively, then the

average cost per call is given
C =p,CT; +p.C.T.. (4.61)

Of course, C; < C,.. From previous section, we know that the expected effective call
holding time 7} for an incomplete call is comparably longer than the expected effective
call holding time T, for a complete call. Hence, from (4.61), we observe that increasing
the rate C. and decreasing the rate C; in certain amount does not change the cost
too much. However, this observation is significant: customers are usually sensitive
to the call interruption, and insensitive to the new call blocking, using discounts to
the interrupted calls may help customers to reconciliate themselves; while this cost
is compensated by increasing certain amount of the rate for complete calls, to which
the customers are less sensitive. Thus, this scheme here is also put customer care
into consideration. This planning is also easy to advertise and likely to be used in

the future.

4.4.3 Nonlinear Charging Planning

In nonlinear charging planning, the charging rates for complete calls and incom-
plete calls are nonlinear functions of the effective holding times for complete calls and

incomplete calls. The cost per call may be expressed as

C = p:Ci(Ty) + pCL(T,), (4.62)
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where C;(-) and C.(-) are nonlinear functions. By choosing these two functions, we
can have different rating planning. It is obvious, if we choose C;(z) = C.(x) = C(z)

and C(z) is a convex function, then we have

which implies that the rating scheme using 7; and 7T, separately can generate more
revenue than the rating scheme using the single parameter 7. The convexity of C(-)
implies that we encourage medium length of calls, and discourage very short calls and
very long calls by applying higher rate to those calls (observing the shape of convex

functions). Another practical example is to choose the function C;(x) to be

& x <T;
Ci(r) = ¢ T, <z <T,
¢ x> T;
while C.(-) may choose linear function. In this example, we may choose the parameter
¢, ¢; and ¢; such that ¢; < min{c;,¢}. This reflects the fact that the setup procedure
is more expensive while the longer calls are discouraged in order to accommodate
more users. Customer care is an important issue in the future PCS networks, this

scheme deserves much more attention. We will investigate this scheme in the future.

4.4.4 Adaptive Charging Planning

Customers may have different calling habits at different places at different times,
service providers may try to determine best rating for their customers to show they
care for their customers. According to the usage of a customer, the service providers
may try to adaptively changing their charging plan to provide the customer an optimal
rate (as a service provider it not only allures its customers to use its service, but more
importantly keep them as its customer in order to stay competitive). By studying
the schemes discussed above, the service providers can determine a rate to please its

customers.
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In summary, the effective call holding times for a complete call and an incomplete
call are very important quantities in billing rate planning. More research in this area

need to be done.

4.5 Illustrative Examples

In this section, we present a few illustrative examples to show how the results
obtained in this chapter can be used to evaluate the performance of PCS networks.

We will focus on the following scenarios:

(1). The cell residence times are iid according to the Gamma distribution with

parameter v = 1.5 and with different 7 values (change of mobility);
(2). The call holding times are iid according to the following distributions

e exponential distribution with parameter y = 1/1.76
e Gamma distribution with parameters (2, y)

e r—stage exponential distribution with parameters r = 2, yu; = 3p and
po = 1.5p

e hyper-exponential distribution with parameters r = 2, a; = 0.4, a, = 0.6,
= 0.8 and ps = 1.24

e hyper-Erlang distribution with parameters r = 2, ay = 0.4, ay = 0.6,

my =1, me =2, uyy = 0.8u and py = 1.2p
(3). The mobility n/u is changing from 0 to 25.
In our examples, the considered distributions have the same expected values (for expo-
nential and Gamma distributions, their expectations are 1/, for r—stage exponential

distribution, its expectation is 1/uy + 1/us, for hyper-exponential and hyper-Erlang

distributions, their expectations are aj/p; + ao/ps2). The choice of p is according
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to the wired telephony trials, where the expected call holding time is approximately

1.76 minutes ([34]).

Figures 4.4 and 4.5 show the call completion probability for different call holding
time distributions in the above scenarios (the marking in Figure 4.5 is used in Figure

4.4 for curve reading). It can be observed the following:

e The call completion probability is insensitive to the call holding time distribu-

tions, especially for low mobility;

e The call completion probability is always decreasing as the mobility increases,
which is consistent with our intuition that the higher the mobility, the more the
handoffs, hence the higher the chance that the call will be incomplete, or the

smaller the call completion probability.

Figures 4.6 and 4.7 show the expected effective call holding times for a complete
call and an incomplete call, respectively. Although the type of the call holding
time distributions does not significantly affect the call completion probability, it does
greatly affect the effective call holding times for a complete call and an incomplete
call. This is why we should consider the effective call holding times in evaluating
the performance of PCS networks. From these two figures, we have the following

observations:

e The expected effective call holding times (for either a complete call or an incom-

plete call) are always decreasing as mobility increases, as expected intuitively;

e For the expected effective call holding time of a complete call, the dependency
on the type of call holding time distributions increases as the mobility increases.
However, it is just the opposite for the expected effective call holding time of

an incomplete call;

e The expected effective call holding time of a complete call is smaller than the

absolute expected call holding time (the ideal case when there is no blocking and
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no forced termination), i.e., 7. < 1/u, while the expected effective call holding
time of an incomplete call can be larger than the absolute expected call holding
time for ideal case, for example, T; > 1/u for hyper-exponentially distributed

call holding times for low mobility.

4.6 Conclusions

In this chapter, we use a general distribution to model the call holding times
and derive general formulae for the probability of a call completion and the expected
effective call holding times of both complete and incomplete calls. By specifying the
call holding time distribution to be Gamma, (staged) Erlang, hyperexponential and
hyper-Erlang distributions, we obtain easy-to-compute formulae to compute these
three quantities. These results can be expected to become significant in evaluating
and tuning PCS network performance, and helpful in exercising the flat rate billing

programs for these networks.
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Chapter 5

BILLING STRATEGIES AND
PERFORMANCE ANALYSIS

We now change to another topic: the billing strategies and performance analysis for
the emerging PCS networks. Due to the fact that the roaming users may traverse a
few registration areas in the process of a call, the classical billing systems for wired
or cellular telephony may not be appropriate for the emerging PCS networks. Here

we propose a few strategies specially for the roaming services.

5.1 Introduction

Billing World [49] predicts that by the year of 2000, US cellular carriers will invest
US$1.6 billion for cellular billing and customer care. According to the managers from
the top 20 cellular carriers, two of the most desirable attributes of the cellular billing

systems are

e flexibility of upgrade and

e the capability to inform the in-house billing experts quickly about the status of
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the system.

Telecommunication services are “culture sensitive”, and the ways of service charg-
ing will significantly affect customer’s behavior. For example, in many US cellular
services, cellular subscribers are charged for the cellular usage, whether they are
the calling or the called parties. Thus, cellular customers will tend to share their
cellular phone numbers with only a small group of people to avoid “junk calls”. On
the other hand, the calling party is always charged for the cellular usage in some
countries, for instance in Taiwan. Therefore, cellular subscribers (especially people
using cellular phones for business) tend to distribute their cellular phone numbers as
widely as possible to enhance their business opportunities. To maximize profits, a
cellular carrier will therefore need to offer a variety of billing plans for same services,
and may need change the plans from time to time to adapt to changing “customer
culture”. Thus, flexibility with upgrade is considered a highly important attribute of
the billing system.

Another important attribute is the provision of quick billing status report, which
is essential for the monitoring and diagnosing the billing system. One way to achieve
this attribute is to report the customer billing records in real time. Unfortunately,
this feature is not supported in most existing cellular billing systems. By comparison,
in the Public Switched Telephone Network or PSTN (wireline network), real time
billing information is possible. Typically, billing information will be delivered in the
Signaling System No. 7 (SST) messages [41] during the call setup/release processes.
The billing information is produced from the automatic message accounting (AMA)
records. During the call setup/release processes, the monitor system tracks SS7
messages of the call and generates a call detail record (CDR) in AMA format when
the call is completed. The CDR record will be stored in Bellcore Accounting Format
(BAF), and the data can be transfered to the rating and billing systems.

The difficulty of providing real-time cellular customer billing records is due to

the fact that the cellular users may roam from their “home systems”(HS) to the
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“visited systems” (VS). When a cellular user is in a visited system, the billing records
for all call activities are kept in the visited system. In the existing cellular roaming
management /call control protocols [37], there is no interaction between the visited
system and the home system at the end of a call. Typically the billing information
is kept in the visited system as a “roam” type Cellular Intercarrier Billing Fxchange
Record (CIBER). The roam CIBERs will be batched and periodically sent to a
clearinghouse electronically or via mail in a tape format, and later forwarded by
the clearinghouse to the customer’s home system. The whole process may take from
five days to more than two weeks. To speed up the billing information transmission,
a cellular billing transmission standard called ETA /TTA 1S-124 has been developed by
working group four of TTA’s TR 45.2 committee [2]. IS-124 will allow real-time billing
information exchange, which will help control fraud by reducing the lag time created
by the use of overnighted tape messages. Version A of IS-124 will also accommodate
both US AMPS and international GSM carriers, which is desirable for heterogeneous

PCS system integration [39].

An important performance issue of cellular billing information transmission is
the frequency of the billing information exchange. In the ideal case, records would
be transmitted for every phone call to achieve the real-time operation. However,
real-time transmission would significantly increase the cellular signaling traffic, and
seriously overload the signaling network of the PSTN. In order to achieve quick billing
status report, a tradeoff is therefore needed between the frequency of the billing

information transmission and the signaling traffic.

In this chapter, we propose three strategies for controlling the billing traffic for
future PCS networks, which can be easily implemented in the billing systems of
current, cellular systems. The first strategy is to update the billing information when
a fixed number of calls have been handled. The second strategy is to report the
customer billing record in fixed time intervals. The third strategy is a combination

of these two strategies, in which thresholds for both time and the number of calls are
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used.

We provide performance analysis of the various strategies, resulting in a set of
guidelines, which can be used to select the appropriate frequency of transmissions for

different network engineering requirements.

5.2 The Billing Checkpointing Models

The purpose of real-time billing information transmission is to ensure that when
one (either a billing expert of the home system or a querying customer) checks the
customer billing records, the information is up-to-date. The time of checking is
referred to as the billing information retrieval point or retrieval point. Very often
the billing record observer may tolerate certain degree of information obsoleteness
(because the home system has not received the records of the outstanding calls) We
define an observation at a retrieval point as k-call outstanding if the most recent k call
records have not been received by the home system at the retrieval point. We can also
define an observation at a retrieval point as x—time outstanding if the time elapsed
at the retrieval point from the last record update is no more than x time units. It is
very important to know the distributions of the number of the outstanding calls and
the outstanding time. Since the billing system makes decisions based on the billing
information received from the visited systems, the degree of “obsoleteness” of the
billing information affects the accuracy of the billing decisions. Thus, it is desirable
to know the average number of outstanding calls and the average total calling time

of outstanding calls for the performance evaluation of billing systems.

We propose three strategies for the provision of quick billing status report while
keeping the signaling traffic due to the on-line billing update in a certain tolerable

level.
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The roamer enters the visited system The roamer leaves the visited system

Figure 5.1: The timing diagram for the Checkpointing Model based on Number of
Calls

5.2.1 Checkpointing Model Based on the Number of Calls

Assume that the billing information of a roamer is sent back to the home system
for every n calls. We refer to n as the checkpointing interval, where 0 < k < n.
The real-time requirement in the cellular billing system specification may be “the
probability of less than k-call outstanding observation should be larger than 6%”.
Thus, based on the mobility and call activities of a user, an appropriate n value can

be selected to satisfy the above requirement.

Note that when the user leaves the visited system, the home system will send a
de-registration or cancellation message to the visited system informing it that the user
left the visited system, and the visited system will acknowledge the de-registration
([51]). We assume that the not-yet checkpointed billing records will be sent back
to the home system through the acknowledgment, and no extra billing transmission

message will be created.

Suppose that the roamer enters a visited system at time 0. The roamer resides
at the visited system for a period 7" as shown in Figure 5.1. We call T" as the Visited
System (or VS) residence time. Suppose that the roamer’s billing information is
retrieved at the home system at time ¢, i.e., an expert or a customer of the home

system queries the billing information at time ¢. If there are K phone calls to the
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roamer during [0,¢], then the billing retrieval is k-call outstanding if K = in + k
for some 7 > 0. We note that a billing record for a call is created when the call is
completed. Thus, “call arrival time” in this context means that the time when the
call record is created. Let Pr[k] be the probability that a billing retrieval is k-call

outstanding.

Assume that T has a general density function f(7") with the Laplace transform
f5(5) = [72, f(T)e*TdT and the mean E[T] = 1/n. Let the calls to the roamer
be a Poisson process with arrival rate A, and the billing retrieval point be a random
observer. Let r(t) and r*(s) be the density function and the Laplace Transform of the
interval ¢ in Figure 5.1. If f(7') is non-lattice, then from the residual life theorem [47]

we have
D=n[ f@)r, and r(s) =" [1 _ f*(s)} (5.1)
T=t S
The billing retrieval is k-call outstanding if there are K =in+k (0 < k < n,i > 0)

call arrivals during the period ¢. Since the call arrivals during the period t are a

Poisson process, the k-call outstanding probability Pr[k] is expressed as

Prlk] = /00 S %e”r(t)dt

t=0
00 )\m+k 00
— Z tl”+kr(t)e’”dt
120 (in+k)!
00 )\ in+k dm+k *
= (in+k)! dsintk o
From (5.1), (5.2) is re-written as
77 )\)m-l—k dintk ( 1 > dintk f* (S)
Prlk] = . -] - —
r{k] z; (in + k)! | ds™mtk \s dsintk s oo
00 A in+k
- X 7 o
1=0 s=A

where

Jintk <1> _ _((m;k)' (5.4)

- dsin-i-lc s _S)m-i-lc-i-l
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and

dant lf*(s)] (5.5)

- dsin—l—k s

For two functions u(s) and v(s) we have
d"u(s)v(s)] & (n) [du(s)] [d"7v(s)
dsm N JZ:% J dsi ds"—i
let u(s) = 1 and v(s) = f*(s), (5.5) is re-written as

(o0 = I

i=0 \ J

We use u(i)(s), in the subsequent development, to denote the :—th order derivative

of function u(s) at point s. From (5.3), (5.4) and (5.6), we have

00 U(—l)in+k+1 )\in+k

Prik] =2 (in + k)!

1=0

(55 () ] [

I
1

S
Il
o

=0

)\z‘n+k in+k i )\in+k dz’n+k7jf* (S)
) _1\intk—j
n { (Sm+k+1> Z ( 1) [(m + k- j)!3j+1] [ dgintk—j ]

s=A

- S-S [ )
- % { (3)-5 5w 5] f*@(A)}

Thus, we have

Theorem 5.1.

Pr[k] = gi [1 - % (__A)jf*m@)] .

i=0 i I
From this theorem, we can develop an algorithm to compute the probability

Pr[k]. Since f*(s) is an analytic function at s = A, hence

oo £+(5) , oo £+(4) ,
I R P RCED o ST

]’ ]:0
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hence from (5.7), we obtain

>33

00 00 RNYi ' 00 (i+D)n+k 5 )
=2y 3 El o) - Z(m)( O f*wm). 65.)

i=0 j=intk+1 J° =0 j=intk+1 7'
Thus, we first expand the f*(s) at s = X as Taylor series, using this to express
f*(0) as f*(0) = X272, ovj, then using the sequence {a;} and (5.7) to compute w; =
Zgzgﬁ,ﬁl «j, hence Pr[k] can be computed by Pr[k] = >-7°(i+ 1)w,. This algorithm
is numerically easy to implement.

Let N, denote the number of outstanding calls, i.e., the number of arriving
calls during the interval between the last billing update and the retrieval point, the
records of these calls are not available at the retrieval point at home system. Let t;,;
be the total calling time of these outstanding calls, and let the arriving calls have the
expected call holding time 1/u. Then the expected number of outstanding calls is
given by

E[N,] = ni:l k Pr[k].
Let t; denote the call holding time of an ];r(;iving call, then the total calling time of

outstanding calls is given by
No
tior = Y ti-
i=1

From Wald’s equation ([63]), we obtain
Eltior] = E[ti|E[No] = E[N,]/p.

Remark: 1f 1/ is interpreted as the average call holding times for possible fraudulent

calls, then the maximum fraudulent calling times is Et;].

For special VS residence time distributions, analytical expression may be ob-
tained. For example, if the VS residence times have an Erlang distribution with the
shape parameter m and the scale parameter « = mn (and thus the variance of the

distribution is V = 1/(mu)?), then

e w05 e

ft) =
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Denote Pr [k] as the probability Pr[k] when the Erlang VS residence distribution

(m,a)
have the shape parameter m and the scale parameter «.. Substitute (5.8) in (5.7) and

after careful rearrangement using the combinatorial identity techniques [62], we have

o ml fin 4 k +1 itk
=> N k1 (5.9)
(m @) i=0 [=0 ()\ + Oé)
(5.9) can be presented in a recursive format:
o sin+k+m—1\ )\ntkgmol
Zn< y——————+ Pr [k], form >1
Prif={ 5\ w1 ) ey ool (5.10)

(m,)

0, form=20

Thus, we have

Corollary 5.1. The probability, (Pr)[k], of k-call outstanding billing retrieval for

Erlang (with parameters (m, «)) VS residence time is given by

+ Pr [k], form>1

o in+k+m—1\ )\ntkgml
77( ) ()\ + a)in+k+m (m—1,a)

(Pr)[k] = ;

m— 1

0, form =20

For m =1 we have

o0 )\m—l—k
Prk] = Z%y:gmﬁﬁ

() () {5l 1)
- <Aza><Aia>ll_<Aia>w C(a=n).  (5.11)

For m = 2 we have

B na(in + k + 1)\intk
(55)%] B Z (A + )in+h+2 + (Pr)[k]
B 00 Znna)\m—l—k 00 k + 1)7704)\m+k
o ()\ + Oé zn+k+2 + Z )\ + Oé m+k+2 + (E(E)[k] (512)

= =

120



Since

NMS

inpa ™R ppa®
)\ + CY zn+k+2 o ()\ + a)k+2

|

- ) (s

B (Anfa> (Aia) ll_

S - S )]}
l(—l () |

_ [(k+ la ] Pr K]

and

A«

(5.12) is rewritten as

CH {(ATa) (Aia>n ll - (Aiaﬂ e l(k;rlo)éa] + 1} PrlH,

(o = 2n). (5.13)

For m = 3,

+ Pr [k]

00 )\in—l—kaZ
Pr (k] = Zn(m+k+2)(m+k+1)l ] b

()\ + Oé) in+k+3

= [(15;;”’] i[iZnZ + (2k 4+ 3)in + (k + 2)(k + 1)] [(Aiaﬂ
( r)[/f]

P
2,

+ (5.14)
Since
ii%i _ z(1+2)
i=0 (1 —x)3
(5.14) is re-written as
B n\Fa?
PT(?,,a)[k] - (A—!—Oz)k"‘?’
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. {n () [+ () | - (Aiaﬂ
+ (2 +3) (Aio)” [1_ (Aiaﬂg

+ (k+2)(k+1) [1 _ (}\ i a)"l—l} + (55)[1:], (a = 3a). (5.15)

Summarizing above discussion, we obtain

Corollary 5.2.

(Ei)m N <)\—7Za> (Aia)k[1<)\ia>nll’ (a=m)
e = G () P Ga) ][] o o

(o = 2n)
n\ka?
(A + «)k+3

(o (2 b (2 - ()T
e ) (o)

+ (k+2)(k+1) [1-( A )n]1}+ Prkl, (o= 3n).

P?"(gﬂ) [k‘] =

X

A+« (2,@)

It is observed that when 7 is sufficiently small, i.e., the roamer stays in that
visited area for sufficiently long time, the number of outstanding calls are equally

probable, i.e., uniformly distributed. Indeed, we can easily show that

1 1
lim Pr[k] = —, lim Pr[k] = —.
n

n—0 (1,a) n. 102
We conjecture that this observation is valid for any nonlattice distribution f(T').

When the VS residence time is exponentially distributed, i.e., m = 1, we have

vt = S £ () (2 b ()]
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Figure 5.2: Time Diagram for Checkpointing Model based on Time Interval
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5.2.2 Checkpointing Model Based on Time Interval

Y

and

In the previous subsection, we applied a threshold to the number of calls in
the update of billing status. This approach may have a disadvantage when the call
holding times are long. For example, when a fraudulent user, using another customer’s
identification, makes a call to a 900 number in the US, the call holding time tends to be
quite long. During a typical billing period, the number of such calls may not be high,
therefore the previous strategy may not be appropriate. One solution to overcome
this is to use time interval (threshold in time) for updating of billing record. In this

subsection, we analyze this strategy.

Assume now that the billing information is sent back to the home system (HS)
from the visited system (VS) for every I time units. As in the previous section, we

assume that the VS residence time 7" has a nonlattice density function f(7") with
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Laplace transform f*(s) and with expected residence time 1/n. Let F(T) be its
distribution function. Let ¢ be the retrieval point. Let ¢, denote the outstanding
time, i.e., the time between the retrieval point and the last update instant. Since the
customer billing record is forwarded to the HS every I time units, ¢, is distributed in
the interval [0, I]. Let r(¢) and 7*(s) be the density function and Laplace transform
of the interval t. As above, I is the updating interval, i.e., the billing information will
be forwarded from the VS to HS every I time units whenever the roamer is still in

that visited area. Using the Residual Life Theorem ([47]) we have

r(t) =n(l = F(t)), and r*(s) = =(1— f*(s)). (5.16)

w |3

As shown in Figure 5.2, ¢, is the time between the last updating instant, say, ¢/ and
the checking point ¢, so
to =1t — il =t(mod I),

where (mod I) here means the residue modulo I. Let f,(t) and F,(¢) denote the
density function and distribution function of t,, respectively. Then for any 0 < x < I,

we have

F,(t) = Pr(t, <z)=Pr(t(mod I) < x)
= iPr(t(mod I <z il <t<(i+1)I)

= Y Pr(t—il < il <t<(i+ 1))

1=0

= Y Pr(il <t<il+ux)

=0
0 il+x o0 il+x
= Y [ =0 [ - )
i=0 "1 i=0
so the density function of ¢, is given by
folx) =Y _r(il +z)=nd> [l — F(il + )] (5.17)
i=0 i=0

Suppose that the Laplace transform of the visited system residence time f*(s) has

only isolated singular points in the open left half complex plane, let o, be the set of
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poles of f*(s). Let o < 0 be such real number such that all poles have real parts
smaller than o. It is obvious that r*(s) and f*(s) have the same poles. From the
inverse Laplace transform formula and the Residue Theorem ([35]), we have (the
contour used in the Residue Theorem is chosen to be the domain in the left half plane
to the left of vertical line Re(s) = o)

/tr+]oo U"‘f’?)ds
o

yisel

M8

folz) = 2

oo i
/ r*(s) Zel ° eds
J Jo—joo 0

o+joo p* sz 1 otjoo (1 — f* sz
el EY U
j Jo—joo 1—€° 27 s(1 —esT)

LS 5 g S

P s(1—est) s=p s(1 —es!)’

@
I
=)

)
a‘H

DN
—_

I
€}

; (5.18)

m

p pEop

where Res,—, denotes the residue at the pole s = p.

Assume that the call arrivals for the roamer is Poisson with arrival rate A. Let
N, denote the number of outstanding calls (the number of calls arriving after the
last billing update instant and before the retrieval point, the billing records of these
outstanding calls are not available at the checking point), then the probability that
there are k outstanding calls is given by

I (Ar)*
k!

Pr(N, = k) = /0 Pr(N, = kl|t, = ) f,(z)dz :/0 e f (2)de.  (5.19)

Following a similar procedure as in the derivation of (5.18), the expected number of

outstanding calls is given by

— g:okPr(No = k) = /01 <k(>}fi')k> e M fo(x)ds
_ /01 A f,(x)de = AE(t,) = Aiﬂ/glm(iux)dag

A o+jo0 I >
= ﬁj/g—joo r*(s)/o e <§ 6”1> dxds

o+joo I ST
= L/ ’ T*(S)/ T dwds
2] j 0




A /UHOO r*(s)[(=1 + sl)e’ + 1]d
- = s
215 Jo—joo s2(1 — esT)
I e OGRS
271 Jomjoo s3(1 — esT)
(L= f(s)I(=1+ sh)e* +1]
= A R
(PO (1= o)
[1+ (sT — 1)e*]f*(s)
= =\ . 2
T o
Let ty,t9,...,t, - - be the call holding times of the roamer, assume that this random

sequence is independently identically distributed with expected value 1/pu, then the
total outstanding calling time (the summation of total calling times for all outstanding

calls) is given by
No
trot = . (5.21)
i=1

From Wald’s equation ([63]) we obtain the expected total outstanding time is given
by
1 I —1 s £x*
Bltr) = E(N)E(t) = =20 3 Reg L L= Ve 177(s)

s=p 83(]_ _ esl)

(5.22)

Summarizing above, we obtain

Theorem 5.2. Suppose that f*(s) has only isolated singular points, let o, denote
the set of poles of f*(s). Let Ress—, denote the residue operator at the pole s = p
([35]). Then, f,(z) can be expressed as follows:

folw) = —n ) Res————r;

peo
BN, = _/\np;p Res 1+ (jzzj(l__l);il)]f*(S);

For simplicity, let
g(s;z) = %, h(s) = L —;3((ij__eil))ed. (5.23)
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If the VS residence times have an Erlang distribution with the shape parameter m
and the scale parameter a = mn, then

)= (==)"

S+ «

This function has only one pole s = —a, i.e., 0, = {—a}. From Theorem 5.2, we

obtain

Corollary 5.3. If the VS residence times are Erlang distributed with parameter

(m, ), then
he) = o) (5.24
E(N,) = —%h(m_l)(—a), (5.25)
Elte) = —%WU(—@. (5.26)

In particular, when m = 1, i.e., the VS residence times are exponentially dis-

tributed, we have

ne”™
R
A 1= (1+nhe™
E(NO) = ol )
n 1—e
A 1—(Q+nhe™
Ety) = —- —
nu e

When m = 2, the outstanding time distribution is given by
2 a

folz) = —n(2n)"7-g(s; )

s s=—2n

n (14 2nz)(1 — e 21) + 2nTe 21!

(]_ _ 67277[)2

e~

The expected number of outstanding calls is given by

E(N,) = _)\77(277)2h(1)(—277)
MU= 2pne ] [3(1— ey 4 2nTe | — (2n1)2(1 — e 2T )e 20! )
a An(1 — e=211)2 .
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And the total outstanding calling time is given by

A { [1 —(1+ 277[)6_2”1] {3(1 —e M) + 277[6_2”1] — (2nD)*(1 — 6_2”1)6_2”]}
dnp(l — e~2n")? .

E(tor) =

It is not difficult to show that when 7 is sufficiently small, the density function
fo(x) for either m = 1 or m = 2 approaches to 1/I, which implies that the outstanding
time is uniformly distributed when the roamer stays in the visited area for sufficiently

long. We conjecture that this is true for any nonlattice distributed VS residence time.

It is obvious that we can apply different distributions such as Gamma, hyper-
exponential and hyper-Erlang distribution to model the VS residence times and

similar analytic results can be obtained. This is left to the readers as exercises.

5.2.3 Checkpointing Model based on Number of Calls and

Time Interval

The last strategy uses the time threshold for updating billing record. This
strategy uses both the number of calls and time interval for updating billing record.
The thresholds used in this case (n and I) may be less restricted (larger) than those
in previous strategies. In this strategy, the billing record update works as follows:
Choose threshold n for the number of calls and threshold I for the time interval. The
billing record at the VS keeps the records of both time, say, ¢3 and the number of
calls, say, ng. When a customer enters a visited area, the billing record for it starts,
and set 3 = 0 and n3 = 0, the clock for ¢35 starts. If there are calls from or to the
customer, ng is incremented by one. Whenever either ¢3 or ng reaches the threshold,
the billing record is forwarded to the HS, at the same time ¢3 and ns are reset to
zeros, and starts over again if the customer is still in the VS area. The methods used

in previous two sections can be modified to analyze the performance of this model.
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5.2.4 Choosing the Threshold

In the above strategies, we need to determine how often the customer’s billing
record should be updated, i.e., how to choose the thresholds, since if the billing record
is forwarded from VS to the HS one by one in real time, the signaling channel may

be congested.

To this end we assume that the call arrivals of a customer have Poisson distri-
bution with parameter A, let 71,7, ... denote the interarrival times whose expected

value is 1/\.

We consider the first strategy. In this strategy, the number of outstanding calls
is related to the call arrival process. Suppose that the billing system may tolerate
the outstandingness of time for a period of 7}, > 0, which is determined by the PCS
network design objective and the availability of the bandwidth for signaling channel.

Then the total time that n call arrives is given by
Tiot =T1+ T2+ -+ T,
we need E[Tjy] < Tp, which is equivalent to
n < \Tj,.

So the threshold can be chosen as the integral part of the positive number \7j,.

In the second strategy, the billing system will be tolerant of a fixed number of
outstanding calls. This is interpreted as the probability of more than, say, K calls
in the interval of length I is less than a preassigned number, say, 0 (0 < 6 < 1).
Suppose that there are N calls in the updating interval with length I, then the above

criterion can be translated into the following

o] o] I 7
Pr(N>K)= Y Pr(N=i)= > (A.,) e M <0,
i=K+1 i=K4+1 b
ie.,
of o (M)
p(I) & ( Z,') e M>1-9. (5.27)
=0 :
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Notice that since d’é—(ll) = —%)\6_)‘] < Oforany I > 0, so p([) is a strictly decreasing
function of I. Also, p(0) = 1 and p(+o00) = 0, then for any 0 < # < 1, we can always
find solution for (5.27). For very small T, (5.27) is always true, but the small value
for I may not be desirable due to the channel traffic intensity requirement. The
best value would be the largest I that satisfies (5.27). It is obvious that there is a
unique solution for this value, which is denoted by Ti,... We can choose I = Ti,a
in the second strategy. The thresholds in the third strategy can use either (7}, K),

a conservative choice, or (I,n) from the previous two strategies based on the value

(Tth)'

5.2.5 On-line Detection of Fraudulent Activities

The previous billing strategies can be used for on-line detection of fraudulent
activities. In PCS networks, the calling record for a user is usually stored in the
HS. When the user roams to another area and uses his portable through the PCS
network, its calling record will temporarily be stored in the VS, then after some time
(possibly hours, days or weeks) the collected calling record will be forwarded to the
HS for accounting and billing purposes. A fraudulent activity may happen during
this transaction time, when an invader uses another customer’s identification to make
connections to the PCS network. This is particularly true for analog cellular systems
where fraud is possible through cloning of the portable. The user, or the system
operator, can find out about the fraud only after reviewing their calling record when

it becomes available, i.e. after the damage has been already done.

With the our proposed strategies, we can implement a model to detect some
of the fraudulent activities more effectively than the classical billing systems where
the fraudulent activity is detected only after the hard copy of the billing record is
delivered to the main office after possible long time. In our model, when the billing

record status report is transferred to the HS through signal channels, at each update
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or a few updates, a statistical analysis is applied to the quantities which characterize
the user’s calling usage. If these quantities do not conform to the user’s registered
usage, an alarm signal will be sent out, and the operator may take actions. For
instance, he can initiate a call to the user to verify whether the user has made those
calls. In this way, the possible fraud can be detected in one updating period, thus

significantly reducing the cost of fraudulent activity.

The quantities used for this evaluation may be mean and variance of calling time
or the number of calls in a certain period of time, etc., in conjunction with certain
thresholds (for alarm signals) of the statistical quantities, for the statistical decision

making. This statistical analyzer can be easily implemented at the HS.

One way to further reduce the signaling traffic for the purpose of fraud detection
is to reduce the data contained in the billing record. A simplified billing record can be
used. Such simplified billing record may contain just the phone number and the call
holding time for each call without other details. In this way, the thresholds n and I
can be smaller than those used in the actual billing updates. The smaller thresholds

can be useful for the approximation of real-time billing.

5.3 Illustrative Examples

We first consider the model based on the number of outstanding calls. Based on
Corollary 5.2, Figure 5.3 illustrates the effect of the Erlang shape parameter m on
the k-call outstanding probability Prg,.)[k]. In the figures, the mean VS residence
time is E[T] = % E[T] can be several hours, days, or months. For simplicity, the call
arrival rate A is normalized by 7 in our numerical examples. Each figure plots the
Pr[k] curves for m = 1,2, and 3 (i.e., « =1, 2n, and 3n), n = 5,10, and A = 5n, 50n.
That is, we consider the Erlang VS residence times T with the same mean 1/n, but
different variances 1/n%, 1/(2n?), and 1/(3n?), respectively. The figures indicate that

the shape parameter (or the variance) of the Erlang VS residence times do not have
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Figure 5.3: Effects of m on Pr[k]
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significant effect on the k-call outstanding probability. This result is true for different
n values and for large A values. Figures 5.3 and 5.5 plots Pr[k] for different A values,

where m = 1, and n = 5 and 10, respectively. These figures indicate that
Prlk] > Prlk+1], for 0<k<n-—1 (5.28)

Let p = A/n be the call to mobility ratio. When p < 3n, Pr[k] may significantly larger
than Pr[k+1]. On the other hand, if p >> n, then Pr[k] ~ Pr[k+1]. This phenomenon
is explained as follows. In the period 7', the last checkpointing is performed when the
roamer moves out of the visited system, and no more than n call records are sent back
to the home system. Thus, if a billing retrieval falls in this last checkpointing period,
it is likely to have a small k-call outstanding observation. For the other “normal”
n-checkpointing intervals, Pr[k] tends to be uniformly distributed (because the billing
retrieval is a random observer). When p >> n, the end effect of the last checkpointing
interval becomes insignificant and Pr[k] ~ Pr[k + 1]. On the other hand, when p is
not much larger than n, the end effect results in large Pr[k] for a small k. Note
that the situations of small p are often observed in the existing system [2], and the
end effect cannot be ignored. Suppose that checkpointing is performed for every n
phone calls (i.e., the checkpointing interval is n). Define 6, as the probability that
the retrieval is less than k-call outstanding, and N,, as the number of checkpointing
operations performed during 7". In cellular network engineering, maximizing 6, ,, and

minimizing N, are two conflict goals.

It is easy to derive that
0, = |1— A - 1— A "
fon = A+7 A+7

Let (3[i] be the probability that there are i checkpointing operations during 7.
Then

for m =1.

n—-1 . ()\t)m—l—k

Al = kz%/to (in + k)!
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Figures 5.6 and 5.7 plot 6, and E[N,] for p = 5 and 45, respectively. From
these two figures, several engineering questions can be answered. For example, when
p = 5, if n is changed from 12 to 8, then 6, is increased by 16%, and E[N,,] is
increased by 130%. With appropriate weighting factors specific to the network under
study, one can use the above data to determine whether it is beneficial to change n
from 12 to 8. Note that 6, is more sensitive to the change of n when p is large than
when p is small. On the other hand, E[N,] is more sensitive to the change of n when
p is small than when p is large. When p = 45, if n is changed from 12 to 8, then 0y,
is increased by 44%, and E|[N,,] is increased by 57%. Thus, it more cost effective to

decrease n when p is large than when p is small.

Next, we consider the billing model based on time interval. Figure 5.8 illustrates

the density function for different the average VS residence time 1/n for the case
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when the VS residence time is exponentially distributed. As in the previous case, the
density function is is a decreasing function of time elapsed from the last updating.
When the roamer stays sufficiently long at that visited area, the outstanding time is
uniformly distributed. When the roamer stays sufficiently short at the visited area,

the outstanding time is approximately exponentially distributed.

Figure 5.9 shows the expected number of outstanding calls for different call arrival
rate A\. As expected, the expected number of outstanding calls is decreasing as 7 is
increasing, which implies that the shorter the roamer stays, the fewer the outstanding
calls. The expected number of outstanding calls is also decreasing as the call arrival
rate ) is decreasing, i.e., the fewer the arrival calls, the fewer the outstanding calls.

These observations are consistent with our intuition.

Figure 5.10 shows the density function of outstanding time is not much affected

by the variance of the VS residence time (which is uniquely determined by m).
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5.4 Conclusions

This chapter has proposed a number of strategies for expediting billing record
updates in the PCS networks. These strategies have been designed as a compromise
between the requirements of traffic for network signaling and the timeliness of the
roamer’s billing record (i.e., the accuracy of the billing information) at the home
system. Performance analysis was performed for all proposed strategies, and was
shown to be useful in optimizing the strategies performance by proper setting of
timing thresholds to balance control traffic overhead and the usefulness of the billing
process. We therefore believe that the results presented here can be used in the future

design of billing systems for PCS networks.
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Chapter 6

CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

PCS networks is a fast-growing area in telecommunications and continue to expand
in the next few years. As new technologies, PCS networks have already penetrated
telecommunications markets nationally and internationally ([44]). As new demands
for integrated services over the air, the PCS networks become more and more inte-
grated and more complex, the system design and analysis become more complicated.
New analytical tools, if possible, need to be found. Current trend for performance
analysis in wireline and wireless networks is heavily relying on simulation modeling.
While this may be helpful for understanding of network performance, however, the
end results are usually problem dependent. It will be desirable to provide some

analytical tools so that general insights can be drawn.

This research is the first step toward this goal. We have developed new analytical
approach for the modeling of the emerging PCS networks. As we have shown, our
approach can tackle problems that the classical approach like queueing theory can
not solve analytically. This new approach deserves further study and new analytical

tools need to be developed along this line. In this section, we list some future research
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directions.
1. Heterogeneous PCS Networks

The basic assumption for some of our results is that the PCS networks are
homogeneous, i.e., the mobile customers are uniformly distributed in the service area,
hence we use the assumption that the cell residence times are independent and iden-
tically distributed. Of course, this is already general enough to approximate the real
situation, it may be more desirable to generalize our approach to the heterogeneous
PCS networks. This may be too difficult to find a closed-form solution, we may just
want to use a less general assumption: the cell residence times are independent but

not necessarily identically distributed. For this case, even computational results are

helpful.
2. Cell Traffic and Channel Occupancy Times

When we study cell traffic and channel occupancy times, we assume that the
call holding time is exponentially distributed, where the memoryless property plays a
very important role. It will be a very challenging problem to study the cell traffic and
channel occupancy times when the call holding time has a more general distribution.
We conjecture that the necessary and sufficient condition for the validity of the
two commonly used assumptions is that the cell residence time is exponentially dis-
tributed, which is true for the case when call holding time is exponentially distributed.

Up to now, we have not been able to solve this problem yet.
3. Blocking Probabilities

Even for homogeneous PCS networks, we have not been able to find a method to
compute the new call blocking probability and handoff call probability under general
call holding time and general cell residence times. The loss network theory ([11, 31])
may be used, however, the computation complexity is a major issue considering so
huge number of cells used in a PCS network. It seems that decomposition techniques

in system theory and perturbation analysis in queueing theory may be helpful at least

142



computationally. Of course, it will be much more desirable to have some analytical

results.
4. Service Charging Planning

Although we only briefly discuss the service charging planning in Chapter 4, there
are plenty of works to be done. Instead of using one parameter—the expected effective
call holding time 7", we propose planning using two parameters—the expected effective
call holding time for a complete call T, and the expected effective call holding time
for an incomplete call T;. This new approach takes customer care into consideration
in mathematical terms. More works need to be done in this area with the cooperation
of service providers who are willing to provide their charging schemes and data for

this study.
5. Billing Systems with Fraud Detection

Roaming services make the PCS billing systems complicated and make wireless
fraudulent usage easier ([17]). In order to stay competitive, a PCS service provider
has to take customer care into consideration. While appropriate rating schemes may
help the cause, a good billing system with fraud detection is another approach to
enhance the customer care program. We proposed three billing record updating
schemes for billing system monitoring, these schemes can also be modified for possible
fraud detection. Performance analysis for two of the schemes were provided. The
analysis for the combined scheme is very difficult. It will be very helpful to give an

analysis either analytically or by simulations.
6. Stmulation Package and Testbed

The proposed models for PCS networks in this research can be easily used to
build up simulation models. In this package, various distributions for call holding
times and cell residence times can be used to evaluate the performance of any type
of PCS networks, the performance metrics proposed in this research can be obtained

under various traffic conditions. Because of the specific cellular structures of PCS
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networks, the object-oriented programming languages such as C'++ can be easily
used to develop this package. Testbed is another practical approach to study the
performance of PCS networks, though the size of testbed may be a problem.
7. Other Applications of This New Approach

The analytical tools for PCS network performance analysis developed in this
research can be used for other problems. As we have already witnessed in the
performance of billing strategies, the technique has been used again. Recently, we

apply this approach to propose a new location model for location tracking in PCS

networks ([16]). Other applications of this approach is worth exploring.
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