
P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

SECURITY
MANAGEMENT

III

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Chapter 15

Key Management in
Wireless Sensor
Networks: Challenges
and Solutions

Yun Zhou, Yanchao Zhang, and Yuguang Fang1

Contents
15.1 Introduction . 446
15.2 Design Issues and Challenges . 448

15.2.1 Cryptographical Issues . 448
15.2.2 Challenges . 449

15.3 Symmetric Key Management . 451
15.3.1 Global Key . 451
15.3.2 Key Server . 451
15.3.3 Full Predistribution . 452
15.3.4 Blom Scheme . 452
15.3.5 Polynomial Model . 453
15.3.6 Random Key Predistribution . 453
15.3.7 Q-Composite RKP . 454
15.3.8 Random-Pairwise Key . 455
15.3.9 Random Key Assignment . 456

1 This work was supported in part by the U.S. Office of Naval Research under Young
Investigator Award N000140210464 and under Grant N000140210554.

445

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

446 � Resource, Mobility, and Security Management

15.3.10 Multiple-Space Key Predistribution . 456
15.3.11 Polynomial Pool-Based Key Predistribution 456
15.3.12 Hwang-Kim Scheme . 457
15.3.13 PIKE Scheme. 457
15.3.14 Grid-Based Key Predistribution . 458
15.3.15 Scalable Key Agreement . 458
15.3.16 Location-Based Key Predistribution . 460
15.3.17 Key Establishment Using Deployment Information 461
15.3.18 Location-Aware Key Management . 461
15.3.19 Neighboring-Cell-Based Predistribution Model 462
15.3.20 Group-Based Key Predistribution Framework 463
15.3.21 LEAP . 463
15.3.22 Key Infection . 465

15.4 Public Key Management . 465
15.4.1 RSA Algorithm . 465
15.4.2 Diffie-Hellman Algorithm. 466
15.4.3 Elliptic Curve Cryptography . 466
15.4.4 Efficient Implementations . 467
15.4.5 Authentication of Public Keys . 468
15.4.6 Location-Based Keys. 468

15.5 Open Issues . 469
15.5.1 Memory Cost . 470
15.5.2 End-to-End Security . 470
15.5.3 Efficient Symmetric Key Algorithms. 471
15.5.4 Key Update and Revocation. 471
15.5.5 Node Compromise. 472

15.6 Conclusion . 472
References . 472

15.1 Introduction
Wireless sensor networks (WSNs) [1] have been seen as a promising network
infrastructure for many military applications, such as battlefield surveillance
and homeland security monitoring. In those hostile tactical scenarios and
important commercial applications, security mechanisms are necessary to
protect WSNs from malicious attacks.

Key management is very critical to security protocols because most of
the cryptographical primitives, such as encryption and authentication, in
those protocols are based on the operations involving keys. Encryption
requires that a key be fed into an algorithm so that plaintexts can be trans-
formed into ciphertexts. To authenticate a packet, a Message Authentica-
tion Code (MAC) can be attached to the packet. However, MACs are usually
computed by hashing the concatenations of packets and keys. Hence, key

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 447

management is of paramount importance for establishing security infras-
tructures for WSNs.

However, to establish keys is a very challenging task in WSNs due to
their unique characteristics, which are different from conventional wired
networks such as the Internet and other wireless networks such as mobile
ad-hoc networks (MANETs). The openness of wireless channels renders
adversaries’ capability to analyze the eavesdropped packets transmitted
between sensor nodes such that some key information can be exposed,
from which adversaries can derive keys between sensor nodes. A sensor
node is usually built with constrained resources in terms of memory, radio
bandwidth, processing capability, and battery power. Strong security algo-
rithms may not be supported by sensor platforms due to their complexity.
In a hostile environment, it is infeasible to provide constant surveillance
on a WSN after deployment, and sensor nodes can be captured so that all
their keying materials are compromised. A WSN may have to scale up to
thousands of sensor nodes, which demands simple, flexible, and scalable
security protocols. However, to design such security protocols is not an
easy task. Higher-level security and less computation and communication
overhead are contradictory requirements in the design of security protocols
for WSNs. In most cases, a trade-off must be made between security and
performance.

A general approach to establishing keys in WSNs includes two steps.
Before sensor nodes are deployed, each node is configured with some
key materials. After those nodes are deployed into a designated terrain,
they perform several rounds of communications to agree on pairwise keys
associated with their key materials. Based on the algorithms used to es-
tablish pairwise keys, current solutions can be classified into symmetric
key schemes and asymmetric key (or public key) schemes. The symmetric
key schemes of the early stage are probabilistic, in that two nodes can use
their key materials to establish a pairwise key with a certain probability.
Therefore, some pairs of nodes can establish keys directly and some pairs
of nodes have to establish pairwise keys through multi-hop paths. How-
ever, their probabilistic nature makes some nodes isolated, in that they are
not be able to establish keys with their neighboring nodes. Then, a de-
terministic approach is proposed so that every pair of nodes can establish
a pairwise key directly or through a multihop path. The probabilistic ap-
proach and the deterministic approach uniformly distribute key materials,
and thus each node can establish direct keys with a small portion of its
neighbors and must establish indirect keys with other neighbors through a
multi-hop path, which may cost large power consumption. Then, location
infomation is used so that nodes close to each other are configured with
correlated key materials. This location-based approach can increase the
probability that each pair of neighboring nodes establishes a pairwise key,
thus saving energy consumption on multi-hop routing. Public key schemes

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

448 � Resource, Mobility, and Security Management

are mainly based on Diffie-Hellman and RSA. However, algorithms in the
field of elliptic curves have drawn much attention recently because of their
efficiency.

In this chapter, some design issues and challenges are first introduced in
Section 15.2. Then, symmetric key schemes are described in Section 15.3,
including probabilistic, deterministic, and location-based solutions. Public
key schemes are discussed in Section 15.4. Section 15.5 sheds light on some
open issues. Finally, the chapter concludes with Section 15.6.

15.2 Design Issues and Challenges

15.2.1 Cryptographical Issues

In his classic paper “Communication Theory of Secrecy Systems” [2],
Shannon, who had established information theory, developed the theoreti-
cal framework for symmetric key-based crytography. In his cryptographical
system model, there are two information sources (i.e., a message source
and a key source) at the transmission end. The key source produces a par-
ticular key K from among those that are usable in the system. This key
K is transmitted by some means, supposedly not interceptible, for exam-
ple by a messenger, to the receiving end. The message source produces a
message M (in the “clear”), which is enciphered by the encipherer TK . The
resulting ciphertext E is sent to the receiving end by possibly interceptible
means, for example radio. At the receiving end, the ciphertext E and the
key K are combined in the decipherer T −1

K to recover the message M . The
transformation TK and its inverse T −1

K are possibly known to the public.
The Diffie-Hellman [3] and RSA [4] algorithms mark the establishment of

asymmetric key-based cryptography. Unlike a single key used in symmetric
key systems, there are two keys in asymmetric key systems. The transmis-
sion end encrypts a message M into a ciphertext E by an encryption key
K . The receiving end decrypts the ciphertext E to get the message M by
a decryption key K −1. Here, the encryption key K and the decryption key
K −1 are different. Although the decryption key is kept secret, the encryp-
tion key is usually known to the public. Asymmetric key systems, therefore,
are also called public key systems.

In a cryptographical system, the message source and the ciphertext
space are usually accessible to an attacker. The encryption and the de-
cryption transforms are also seen as accessible to the attacker. Although
in some specific systems the cryptographical algorithms can be kept se-
cret, this approach may increase system vulnerability because an algorithm
that is not inspected carefully by critical experts may have some poten-
tial defects that can be utilized by hackers. Therefore, most “secure” algo-
rithms are public so that they can be carefully inspected. In this case, the

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 449

security of the entire system primarily relies on the secrecy of the keys it
uses.

If an attacker can find the key, the entire system is broken. The at-
taker can achieve this goal by cryptanalysis. Most cryptographical systems
are vulnerable to cryptanalysis due to the existence of the redundancy of
message source in the real world. The redundancy can always provide the
attacker with a possible tool to do cryptanalysis over intercepted ciphertexts
during their transmission. Moreover, the attacker knows the system being
used, that is, the message space, the transformation Ti , and the probabilities
of choosing various keys, and has unlimited time and manpower available
for the analysis of ciphertexts. The attacker thus can use all these resources
to find the key if time is not important to him. Another way is to directly
intercept the key during its transmission between the message source and
receiving end. Therefore, how to securely achieve key agreement between
the source and sink is a very important issue.

Generally, establishing keys involves two steps. First, the source and
sink should be configured with some key materials. Second, those materi-
als are used to establish a shared symmetric key between the source and
sink. In symmetric key systems, those key materials can be the shared sym-
metric key or parameters used to calculate a symmetric key. In asymmetric
key systems, they are parameters associated with the chosen asymmetric
key algorithm (e.g., Diffie-Hellman or RSA), and the source and sink can
negotiate a shared symmetric key using the asymmetric key algorithm. After
those nodes are deployed into a designated terrain, they perform several
rounds of communications to agree on pairwise keys associated with their
key materials.

15.2.2 Challenges

Although the key management problem has been investigated thoroughly
in conventional wired networks such as the Internet and wireless networks
such as cellular networks, WLANs, or ad hoc networks, the exising solutions
can hardly be transplanted into WSNs due to their unique characteristics,

In wired networks, the key materials transmitted over shielded wired
lines during the negotiation phase between the source and sink are more
difficult to intercept. But a wireless channel is open to eavesdroppers. In
addition to eavesdropping key materials to expose corresponding keys,
adversaries can also intercept the encrypted ciphertexts so that adversaries
can analyze the eavesdropped packets to get some key information, from
which adversaries can derive keys between sensor nodes.

In cellular networks and WLANs, the communication pattern is one-hop,
that is, between the base station or the access point and the mobile node;
but in WSNs, all the nodes are involved into multi-hop communications.
Most centralized secure protocols cannot be directly applied in distributed

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

450 � Resource, Mobility, and Security Management

WSNs. Although ad hoc networks bear more similarities to WSNs, the nodes
in ad hoc networks are more powerful than those in and are WSNs, and
are thus able to support more secure, more complex protocols.

Moreover, a wireless channel is very dynamic. Key establishment pro-
tocols can endure frequent interruptions when channel conditions vary.
Although link layer protocols may have some error control mechanisms,
the cost of establishing keys is inevitably increased.

The openness of a wireless channel also render adversaries the abil-
ity to launch the denial-of-service (DoS) attack [5]. Constant or random
jamming interferences can be introduced by adversaries to corrupt normal
communications, thus leading to the failure of key establishment protocols.

To save cost, sensor nodes are usually built with constrained resources.
For example, the latest MICA motes [6] only use 8-bit processors. Their
memory size is measured in units of kB (kilobytes). The radio interface
can support approximately 40 kbits/sec, The entire mote platform is only
powered by 2 AA bateries. The constraned processing capability makes
the implementation of strong security algorithms a very challenging task.
Considering the power limit, it is impratical to support complex protocols
if a long lifetime of the WSN is desirable.

WSNs are usually deployed in hostile environments, such as battlefields
or disaster locations, where fixed infrastructures are not available. After
deployment, it is infeasible to provide constant surveillance of and protec-
tion for a WSN. In many security-critical scenarios, adversaries may have
ability to access sensor nodes without being detected. Adversaries can use
proper devices to dig into sensor hardware and find key materials. Due to
cost constraints, it is also unrealistic and uneconomical to employ tamper-
resistant hardware to secure the cryptographic materials in each individual
node. Even if tamper-resistant devices are available, they are still not able
to guarantee perfect security of secret materials [7]. Hence, adversaries can
capture any node and compromise the secrets stored in that node. Further-
more, adversaries can use the compromised secrets to derive more secrets
shared between other non-compromised nodes. This means that the node
compromise attack is unavoidable in WSNs. What we can do is to reduce
the impact on other normal nodes as much as possible.

A compromised node can be used as a platform to launch other tricky
attacks. The adversary can let the compromised node impersonate another
normal node to establish secure communications with other normal nodes.
Therefore, node authentication should be considered during the key estab-
lishment procedure. If the compromised node is involved as a router be-
tween a pair of source and sink nodes, the key negotiation procedure may
fail just because the compromised node intentionally drops some packets
for the negotiation between the source and sink.

Scalability is another important issue. According to different applica-
tion scenarios, a WSN can have from tens to thousands of sensor nodes.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 451

Moreover, during the lifetime of the WSN, some nodes can run out of
power, and some new nodes can be inserted to increase the network pro-
cessing capability. Therefore, the number of nodes can vary from time to
time. These node dynamics demands simple, flexible, and scalable security
protocols. However, to design such security protocols is not an easy task.
The reason mainly lies in that the memory cost per node increases quickly
when the network size enlarges. For example, conventional key establish-
ment schemes [8,9] cannot support large networks due to their memory cost
of N − 1 units in a network of N nodes. To increase the scalability, many
works partition the entire network into several portions and apply conven-
tional schemes in each portion, but the security performance is reduced.

Generally, higher-level security and less computation and communica-
tion overhead are contradictory requirements in the design of security pro-
tocols for WSNs. In most cases, a trade-off must be made between security
and performance.

15.3 Symmetric Key Management
Due to its computational efficiency, it is commonly believed that symmetric
key technology is more viable for resource-constrained, low-end devices
than public key technology. Therefore, most of the security protocols de-
veloped thus far for WSNs are based on symmetric key technology. We
discuss this approach first.

15.3.1 Global Key

The simplest symmetric key scheme is to use a global key [10], which is
shared by all the sensor nodes. Data traffic is protected by the global key.
The global key is updated periodically. In each period, a sensor node is
elected as a key manager that generates and distributes a new global key to
all the other sensor nodes. If all the sensor nodes are trustful, this scheme
can effectively prevent external adversaries from accessing critical infor-
mation that is secured by the global key. However, the scheme is very
vulnerable to node compromise in that adversaries can get the global key
by compromising only one node and thereby break into the entire sensor
network.

15.3.2 Key Server

A WSN is usually connected to external wired networks through a base
station (BS). The BS can act as a key server to distribute keys for any pair of
sensor nodes [11]. In particular, each sensor node shares a unique key with
the BS. When two nodes need to establish a shared key, one can generate

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

452 � Resource, Mobility, and Security Management

the key and let the BS forward the key to the other node. This procedure
can be secured by the keys shared between the sensor nodes and BS.

This centralized approach can reduce the impact of node compromise
because compromising one node does not result in the exposure of keys
between non-compromised nodes. However, the communication overhead
is high because two close nodes may have to carry out handshakes through
the central key server at a distant place. There is still a concern for security,
in that the key server may become a potential point of failure even if the
server is under careful protection. The entire network can break down if
adversaries successfully corrupt the key server.

15.3.3 Full Predistribution

Usually, a WSN belongs to an authority. The authority can do configurations
before deploying the network such that any pair of nodes is preloaded with
a unique shared key. This scheme is the most resilient to node compromise
because adversaries will not know each key unless they compromise one
of the two nodes sharing the key. Moreover, each key is preloaded, so
no negotiation is required between nodes. However, the memory cost is
very high. In a WSN of N nodes, each node needs to store N − 1 keys,
and the overall number of keys in the WSN is N (N−1)

2 . It is unaffordable
on memory-constrained sensor platforms when N is very large. Therefore,
this approach works only in small sensor networks.

15.3.4 Blom Scheme

A similar approach was proposed by Blom [8]. His method is based on
(N , t + 1) maximum distance separable (MDS) linear codes [12]. Before a
WSN is deployed, a central authority first constructs a (t + 1) × N public
matrix P over a finite field Fq . Then the central authority selects a random
(t + 1) × (t + 1) symmetric matrix S over Fq , where S is secret and only
known to the central authority. An N × (t + 1) matrix A = (S · P)T is
computed, where (·)T denotes the transpose operator. The central authority
preloads the i-th row of A and the i-th column of P to node i, for i =
1, 2, . . . , N . When nodes i and j need to establish a shared key, they first
exchange their columns of P , and then node i computes a key Ki j as the
product of its own row of A and the j -th column of P and node j computes
K ji as the product of its own row of A and the i-th column of P . Because
S is symmetric, it is easy to see that:

K = A · P = (S · P)T · P = P T · ST · P

= P T · S · P = (A · P)T = K T (15.1)

Therefore, nodes pair (i, j) will use Ki j = K ji , as a shared key.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 453

The Blom scheme has a t-secure property, in that in a network of N
nodes, the collusion of less than t + 1 nodes cannot reveal any key shared
by other pairs of nodes. This is because as least t rows of A and t columns
of P are required to solve the secret symmetric matrix S . The memory cost
per node in the Blom scheme is t + 1. To guarantee perfect security in
a WSN with N nodes, the (N − 2)-secure Blom scheme should be used,
which means the memory cost per node is N −1. Hence, the Blom scheme
can provide strong security in small networks.

15.3.5 Polynomial Model

A polynomial-based key establishment scheme was described by Blundo
et al. [9]. It is a special case of Blom’s scheme, in that a Vandermonde
matrix is used as the generator matrix of MDS code. They used a t-degree
bivariate polynomial, which is defined as:

f (x, y) =
t∑

i=0

t∑
j=0

ai j x
i y j (15.2)

over a finite field Fq , where q is a prime that is large enough to accommo-
date a cryptographic key. By choosing ai j = aji , we can get a symmetric
polynomial in that f (x, y) = f (y, x). Each sensor node is assumed to have
a unique, integer-valued, non-zero identity. For each sensor node u, a poly-
nomial share f (u, y) is assigned, which means the coefficients of univariate
polynomials f (u, y) are loaded into node u’s memory. When nodes u and
v need to establish a shared key, they broadcast their IDs. Subsequently,
node u can compute f (u, v) by evaluating f (u, y) at y = v, and node v can
also compute f (v, u) by evaluating f (v, y) at y = u. Due to the polynomial
symmetry, the shared key between nodes u and v has been established as
Kuv = f (u, v) = f (v, u). Similar the Blom scheme, a t-degree bivariate
polynomial is also (t + 1)-secure, meaning that adversaries must compro-
mise no less than (t + 1) nodes holding shares of the same polynomial to
reconstruct it. But the memory cost is also the same as that of the Blom
scheme. Hence, the polynomial model is also suitable in small networks.

15.3.6 Random Key Predistribution

In ideal cases, every pair of nodes in a network should have a unique
shared key. Although full predistribution, the Blom scheme, and the poly-
nomial model can achieve this goal, the cost is that each node needs to
store N − 1 keys in a network of N nodes. This is impractical for WSNs
due to the memory constraints of sensor nodes when the network scale
is very large. Instead, most recent research articles in this field lose the

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

454 � Resource, Mobility, and Security Management

security requirement and follow a partial predistribution approach, wherein
key materials are predistributed such that some sensor nodes can establish
shared keys directly and they can help to establish indirect shared keys
between other sensor nodes.

A pioneer work following this approach is random key predistribution
(called RKP hereafter) [13]. In RKP, each node is preloaded with a subset of
m keys randomly selected from a global pool of M keys such that any pair
of neighboring nodes can share at least one key with a certain probability,
that is:

p = 1 −
(M−m

m

)
(M

m

) (15.3)

RKP is developed based on an observation that it is unnecessary to
guarantee full connectivity for a sensor node with all its neighbors, as long
as multi-link paths of shared keys exist among neighbors that can be used
to set up a path key as needed. The rationale behind this observation is the
random graph theory. When the probability p that a link exists between
two nodes increases, the probability Pc that the entire graph is connected
also increases. There is a required p such that Pc is almost 1. Hence, we
can choose m and M such that the entire network is almost connected.
In RKP, two neighboring nodes can have a shared key directly if their key
subsets have an intersection or negotiate an indirect key through a secure
path, along which every pair of neighboring nodes has a direct shared key.

A major concern of RKP is node compromise. By tampering or crypt-
analysis, adversaries can compromise a node and expose its key subset.
Because each key is reused by many sensor nodes, those exposed keys
can be used to corrupt links between other non-compromised nodes if
those links happen to be secured by the exposed keys.

Another concern is the communication overhead. Due to the memory
constraint, each sensor node cannot keep too many keys. Hence, the value
of p is rather small, which means that each sensor node needs to negotiate
keys with a large portion of neighboring nodes through multilink paths.

15.3.7 Q-Composite RKP

To mitigate the impact of node compromise, Chan, Perrig, and Song [14]
suggested to improve RKP such that any pairs of neighboring nodes are
required to share at least q keys with a certain probability. Let p(i) be the
probability that two nodes share i keys; then:

p(i) =
(M

i

)(M−i
2(m−i)

)(2(m−i)
m−i

)
(M

m

)2 (15.4)

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 455

and the probability that two nodes share at least q keys is:

p = 1 − (p(0) + p(1) + · · · + p(q − 1)) (15.5)

This scheme achieves greatly strengthened security under small-scale
attacks while trading off increased vulnerability in the face of large-scale
attacks on network nodes. As the amount of required key overlap increases,
it becomes exponentially more difficult for an attacker with a given key set
to break a link. However, to preserve the given probability p of two nodes
sharing sufficient keys to establish a secure link, it is necessary to reduce
the size of the global key pool M . This allows the attacker to gain a larger
sample of the global key pool by breaking fewer nodes.

15.3.8 Random-Pairwise Key

Authentication is necessary to provide assurance for the identities of com-
municating parties. This can be achieved through the normal challenge-
response approach based on the unique key shared by the communicating
parties. In particularly, one verifier node can send an encrypted random
number, called a challenge, to the other node, and that node can prove its
identity by returning the decrypted result to the verifier node. The identity
of the verifier node can be authenticated in the same way.

RKP and q-composite RKP can hardly provide authentication because
of the reuse of the same key in many sensor nodes. To solve the problem,
Chan, Perrig, and Song also proposed the random-pairwise key (RPK) [14]
scheme. For each node, a set of M nodes is randomly selected from the
entire network, and a unique pairwise key is assigned for the pair of the
node and each of the nodes in the set. When the network consists of N
nodes, any pair of nodes can share a pairwise key with a probability

p = M

N
(15.6)

Based on the random graph theory, the entire network can be connected
as long as the probability is larger than a threshold. Hence, any pair of
nodes can either share a direct key or negotiate an indirect pairwise key
through a multilink secure path. The uniqueness of direct keys can be used
to authenticate node identities.

In RPK, each direct key is uniquely generated and shared by a unique
pair of nodes, so RPK is resilient to node compromise in terms of the secrecy
of direct pairwise keys. However, the negotiation of indirect pairwise keys
can introduce a lot of communication overhead due to the discovery of
secure paths and handshakes between two end nodes.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

456 � Resource, Mobility, and Security Management

15.3.9 Random Key Assignment

To discover whether the key sets of two nodes have an intersection, usu-
ally both nodes need to broadcast their key indices or find common keys
through the challenge-response procedure. Such methods are not commu-
nication efficient. Pietro, Mancini, and Mei [15] improved the RKP scheme
by associating the key indices of a node with the node identity. For ex-
ample, each node is assigned a pseudo-random number generator g(x, y),
and the key indices for the node are calculated as g(ID, i) for i = 1, . . . , M ,
where ID is the node identity. In this way, other nodes can quickly find
out which key is in its key set by checking its node identity.

15.3.10 Multiple-Space Key Predistribution

In the face of node compromise, the security level of RKP and its deriva-
tives described above will deteriorate quickly, in that each time adversaries
compromise one more node, more secrets such as keys are exposed.

To improve the resilience to node compromise, Du et al. [16] developed
the multiple-space key predistribution (MSKP) scheme based on the Blom
scheme. Specifically, a public matrix P and a global pool of symmetric
matrices Si for i = 1, . . . , w are constructed. Each tuple (Si , P) is called a
key space. For each sensor node, v spaces are randomly selected, and the
node is configured with parameters derived according to the Blom scheme.
Obviously, if two neighboring sensor nodes have a space in common, they
can calculate a direct pairwise key according to the Blom scheme. The merit
of MSKP is that it can tolerate up to a certain number of compromised node
befores the security level of the network begins to deteriorate. This is due
to the threshold-based security of the Blom scheme.

15.3.11 Polynomial Pool-Based Key Predistribution

Another scheme, called polynomial pool-based key predistribution (PPKP)
[17], is basically the same as the MSKP scheme, but each Blom matrix is
replaced by a t-degree bivariate polynomial. Each sensor node randomly
selects v polynomials from a global pool of w polynomials. Any pair of
neighboring nodes can calculate a direct pairwise key if they share the same
polynomial. Like MSKP, PPKP can also provide threshold-based resilience
to node compromise.

Another merit of MSKP and PPKP is that each direct key is tied to the
identities of the nodes sharing it. Hence, they can provide authentication
like RPK.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 457

15.3.12 Hwang-Kim Scheme

The schemes discussed above require each sensor node keep many key
materials such that two nodes share a key with a probability that can guar-
antee that the entire network is almost connected. The requirement may
be too harsh in memory-constrained sensor networks. Hwang and Kim [18]
revisited the RKP scheme and its derivatives, and proposed to reduce the
amount of key materials that each node keeps while still maintaining a
certain probability of sharing a key between two nodes. Their idea is to
guarantee that the largest giant component of the network, instead of the
entire network, is almost connected. Hence, each sensor node can keep
less key materials. The probability that two nodes have a key in common
is reduced, but it is still large enough for the largest network component
to be connected. The trade-off is that more nodes can be isolated because
they do not share keys with their neighbors.

15.3.13 PIKE Scheme

The probabilistic nature of the random distribution of key materials cannot
guarantee that two neighboring nodes establish a shared key. To facilitate
key establishment between every pair of neighboring nodes, a determin-
istic approach can be taken. In the peer intermediaries for key establish-
ment (PIKE) scheme [19], all N sensor nodes are organized into a two-
dimensional space (Figure 15.1), where the coordinate of each node is
(x, y) for x, y ∈ {0, 1, 2, . . . ,

√
N − 1}. Each node shares unique pairwise

keys with 2(
√

N − 1) nodes that have the same x or y coordinates in the
two-dimensional space. For two nodes with no common coordinate, an in-
termediate node, which has common x or y coordinates with both nodes,
is used as a router to forward a key for them. However, the communication
overhead is rather high because the secure connectivity is only 2√

N
, which

i

j

i − 1

i + 1

j + 1j − 1

Figure 15.1 PIKE scheme. Sensor nodes are organized into a two-dimensional
space.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

458 � Resource, Mobility, and Security Management

means that each node must establish a key for almost each of its neighbors
through multilink paths.

15.3.14 Grid-Based Key Predistribution

The grid-based key predistribution (GBKP) scheme [17] uses the same two-
dimensional space as PIKE. Instead of pairwise keys in PIKE, GBKP assigns
a bivariate symmetric polynomial for each set of nodes with the same x or
y coordinate. Hence, direct keys can be established between nodes with
the same x or y coordinate according to the polynomial model. Indirect
keys can be negotiated in the same way as that in PIKE. PIKE and GBKP
can guarantee that any pair of nodes shares a direct key or negotiates an
indirect key through a third node. Moreover, a node can find whether it has
a direct shared key with another node based on the coordinate of that node.
This can provide an authentication service, in that the identity, associated
with the coordinate, of a node can be challenged based on its keys that are
related to its identity.

15.3.15 Scalable Key Agreement

Zhou and Fang [20] developed a scalable key agreement. They use a
t-degree (k + 1)-variate symmetric polynomial to establishe keys in a de-
terministic way.

A t-degree (k + 1)-variate polynomial is defined as:

f (x1, x2, . . . , xk, xk+1) =
t∑

i1=0

t∑
i2=0

· · ·

t∑
ik=0

t∑
ik+1=0

ai1,i2,...,ik,ik+1 xi1
1 xi2

2 · · · xik
k xik+1

k+1 (15.7)

All coefficients are chosen from a finite field Fq , where q is a prime that is
large enough to accommodate a cryptographic key.

A (k + 1)-tuple permutation is defined as a bijective mapping:

σ : [1, k + 1] −→ [1, k + 1] (15.8)

By choosing all the coefficients according to

ai1,i2,...,ik,ik+1 = aiσ (1),iσ (2),...,iσ (k),iσ (k+1) (15.9)

for any permutation σ , a symmetric polynomial can be obtained in that

f (x1, x2, . . . , xk, xk+1) = f (xσ (1), xσ (2), . . . , xσ (k), xσ (k+1)) (15.10)

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 459

Each node is identified by an ID (n1, n2, . . . , nk), which is the coordinate
of a point in a k-dimension space S1 × S2 × · · · × Sk, where ni ∈ Si ⊂ Z

for i = 1, . . . , k and Si
⋂
S j = φ, for i = j .

For a node (n1, n2, . . . , nk) in the network, a polynomial share

f1(xk+1) = f (n1, n2, . . . , nk, xk+1)

=
t∑

ik+1=0

bik+1 xik+1
k+1 (15.11)

is calculated using the node ID as inputs to the t-degree (k + 1)-variate
symmetric polynomial.

If two nodes u with ID (u1, u2, . . . , uk) and v with ID (v1, v2, . . . , vk) have
only one mismatch in their IDs, say ui = vi for some i but uj = v j = c j

for other j = i, then nodes u and v can calculate a shared key as:

Kuv = f (c1, . . . , ui , . . . , ck, vi) = f (c1, . . . , vi , . . . , ck, ui) (15.12)

If two nodes have more than one mismatch in their IDs, they cannot
calculate a direct key. In this case, they can negotiate an indirect key over
a multi-hop path, along which every pair of neighboring nodes has already
calculated a direct key.

An example of a three-dimensional ID space is given in Figure 15.2.
For any edge, the pair of nodes at its two end can calculate a direct key
because the two nodes have only one mismatch in their IDs. Suppose node

n1

n2

n3 (u1, u2, u3)

(v1, v2, v3)

(v1, u2, u3)

(v1, u2, v3)

(u1, v2, u3)

(u1, v2, v3)(u1, u2, v3)

(v1, v2, u3)

Figure 15.2 Multidimension key graph. Nodes (u1, u2, u3) and (v1, v2, v3) can
negotiate a key through any path consisting of connected edges of the cube.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

460 � Resource, Mobility, and Security Management

(u1, u2, u3) needs to establish a shared key with node (v1, v2, v3), where all
three indices in their IDs are mismatching. There are three disjoint paths
from node u to node v. For example, three disjoint paths are:

(u1, u2, u3) → (v1, u2, u3) → (v1, v2, u3) → (v1, v2, v3)

(u1, u2, u3) → (u1, u2, v3) → (v1, u2, v3) → (v1, v2, v3)

and

(u1, u2, u3) → (u1, v2, u3) → (u1, v2, v3) → (v1, v2, v3)

Obviously, the above set of disjoint paths is not unique.
The dimension of the ID space k is a parameter to be controlled to

achieve the trade-off between memory cost per node and scalability. To
guarantee each direct key unsolvable by adversaries, no matter how many
nodes are compromised, the memory cost per node is less than

M ≤ k log k + log N +

 k

√
N

k+1

√
k(k + 1)!

2
+ 1

 log q (15.13)

where N is the total number of nodes, q is the field size, and all the subspace
Si have the same cardinality. Obviously, the scheme has good scalability,
in that the memory cost is only on the order O(k

√
N) when k is fixed.

15.3.16 Location-Based Key Predistribution

In the aforementioned schemes, key materials are uniformly distributed in
the entire terrain of a network. The uniform distribution makes the probabil-
ity that two neighboring nodes share a direct key, called secure connectivity,
rather small. Therefore, a lot of communication overhead is inevitable for
the establishment of indirect keys. If some location information is known,
two nearby sensor nodes can be preloaded intentionally with the same
set of key materials. In this way, we can expect improvement in secure
connectivity.

In the location-based key predistribution (LBKP) scheme [21], the entire
sensor network is divided into many square cells. Each cell is associated
with a unique t-degree bivariate polynomial. Each sensor node is preloaded
with shares of the polynomials of its home cell and four other cells hori-
zontally and vertically adjoining its home cell. After deployment, any two
neighboring nodes can establish a pairwise key if they have shares of the
same polynomial.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 461

C33 C34C32

C43

C23

Figure 15.3 LBKP scheme. The polynomial of cell C33 is also assigned to cells C32,
C34, C23, and C43. A node in C33 has some common polynomial information with
other nodes in the shadow areas.

For example, in Figure 15.3, the polynomial of cell C33 is also assigned
to cells C32, C34, C23, and C43. The polynomials of other cells are assigned in
the same way. As a result, a node in C33 has some polynomial information
in common with other nodes in the shadow areas.

15.3.17 Key Establishment Using Deployment Information

Du et al. [22] divide, the entire network into many square cells. Each cell
is assigned a subset key pool Si j , i = 1, . . . , u and j = 1, . . . , v out of a
global key pool S . Those subset key pools are set up such that the key
pools of two neighboring cells will share a portion of keys. In each cell,
the RKP [13] scheme is applied.

Using deployment knowledge to achieve the same connectivity, the size
of the key ring that one node holds in this scheme is much less than that
in the RKP scheme. This can significantly save the memory of sensors.
However, it still inherits the same weakness as RKP, in that it does not
provide authentication.

15.3.18 Location-Aware Key Management

Huang et al. [23] also used square cells. To provide intra-cell connectivity,
the MSKP scheme [16] is applied in each cell such that any pair of nodes
having a common space in one cell can establish a shared key. The RPK
scheme [14] is applied between neighboring cells in that for each sensor
node, a node from each of its neighboring cells is selected and a unique
key is assigned to the pair of nodes. This provides inter-cell connectivity.

The MSKP scheme provides strong resilience to node compromise.
However, network connectivity is low because the randomly- distributed
key spaces in each cell and the randomly- assigned pairwise keys between

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

462 � Resource, Mobility, and Security Management

cells can only guarantee that each node has shared keys with a portion of
its neighbors.

15.3.19 Neighboring-Cell-Based Predistribution Model

Threshold-based schemes such as the Blom [8] and polynomial schemes
[9] can tolerate only a certain number of compromised nodes. The more
nodes sharing a Blom matrix or a polynomial, the more likely they are
exposed due to node compromise. Therefore, if we can reduce the number
of nodes sharing a Blom matrix or a polynomial, the security then increases.
Following this idea, Zhou, Zhang, and Fang investigated a neighboring-cell-
based predistribution model based on hexagon [24] and triangle [25] grid
models.

Zhou, Zhang, and Fang [24] divided the entire network terrain into non-
overlapping hexagon cells. The polynomial model [9] is used here. Unlike
LBKP [21], which assigns a polynomial to each cell and its four adjacent
cells, [24] assigns a polynomial to each pair of neighboring cells. For
example, in Figure 15.4, cell c0 is assigned six polynomials, each of which
is uniquely shared with one of its neighboring cells; therefore, the nodes in
cell c0 can establish direct pairwise keys with the nodes in the shadow area.
The reduced number of nodes sharing one polynomial means less chance
the polynomial can be exposed by collusion of compromised nodes. Hence,
this new predistribution method can improve the resilience to node com-
promise. At the same security level, [24] requires less memory cost for each
node compared with LBKP [21]. Due to the use of deployment knowledge,
the security connectivity is very high.

Later, Zhou, Zhang, and Fang [25] improved the hexagon grid model to
the triangle grid model, in which the entire network is divided into non-
overlapping triangle cells. The same key materials predistribution method is

c0

c1
c2

c3
c4

c5

c7

Figure 15.4 Hexagon grid-based key predistribution. Cell c0 is assigned six Blom
matrices or polynomials, each of which is uniquely shared with one of its neighboring
cells.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 463

c0
c1c2

c3

Figure 15.5 Triangle grid-based key predistribution. Cell c0 is assigned three Blom
matrices or polynomials, each of which is uniquely shared with one of its neighboring
cells.

used as in [24], in which each pair of neighboring cells is associated with a
unique t-degree bivariate polynomial [9] or a Blom matrix [8]. For example,
in Figure 15.5, cell c0 is assigned three Blom matrices or polynomials,
each of which is uniquely shared with one of its neighboring cells, and
the nodes in cell c0 can establish direct pairwise keys with the nodes in
the shadow area. This scheme further reduces the memory cost of each
node at the same security level compared to the hexagon or the square
grid model because each node needs to keep only three polynomials or
matrices. Although the security connectivity is smaller than that of hexagon
grid model, it is still much larger than conventional schemes that do not
use location information.

15.3.20 Group-Based Key Predistribution Framework

Liu, Ning, and Du [26] established a group-based key predistribution frame-
work that may incorporate previous schemes. They divide all the sensor
nodes into many deployment groups. In each group, a specific keying ma-
terial distribution scheme, which could be one of the schemes discussed
above, is applied to provide in-group connectivity. Also, each group picks
one node and all those picked nodes form a cross group. There is also a
specific keying material distribution scheme for each cross group. There-
fore, two nodes from different deployment groups can establish a shared
key through a path in a cross group.

15.3.21 LEAP

Zhu, Setia, and Jajodia proposed a Localized Encryption and Authentication
Protocol (LEAP) [27] for sensor networks. LEAP supports the establishment
of four types of keys for each sensor node: (1) an individual key shared
with the base station, (2) a pairwise key shared with another sensor node,

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

464 � Resource, Mobility, and Security Management

(3) a cluster key shared with multiple neighboring nodes, and (4) a group
key shared by all the nodes in the sensor network.

In this protocol, each node has an individual key that is only shared
with the base station. This key is generated and preloaded into each node
prior to its deployment. The individual key K m

u for a node u is generated
as K m

u = fK m
s
(u) (assuming that each node has a unique ID). Here, f is a

pseudo-random function and K m
s is a master key known only to the base

station.
A pairwise key refers to a key shared only between the node and one

of its direct neighbors (i.e., one-hop neighbors). At first, each node u is
preloaded with an initial key K I . Then sensor node u derives a master key
Ku = fK I (u). When it is deployed, node u initiates a timer Tmin and then
broadcasts a HELLO message that contains a nonce N to each neighbor v.
The reply from each neighbor v is authenticated using its master key Kv .
Because node u can compute Kv using K I , it is able to verify node v ’s
identity independently. The handshake is as follows:

u → ∗ : u, Nu

v → u : v, MAC(Kv , Nu|v)

Then node u computes its pairwise key with v as Kuv = fKv (u). Node v
can also compute Kuv independently. When a preset timer Tmin expires,
node u erases K I and all the keys Kv it computed in the previous phase.

A cluster key is a key shared by a node and all its neighbors, and
is primarily used for securing locally broadcast messages, for example,
routing control information, or securing sensor messages that can benefit
from passive participation. Consider the case that node u wants to estab-
lish a cluster key with all its immediate neighbors v1, v2, . . . , vm. Node u
first generates a random key K c

u , then encrypts this key with the pair-
wise key of each neighbor, and then transmits the encrypted key to each
neighbor vi :

u → vi :
(
K c

u

)
Kuvi

Node vi decrypts the key K c
u and stores it in a table. When one of the

neighbors is revoked, node u generates a new cluster key and transmits to
all the remaining neighbors in the same way.

A group key is a key shared by all the nodes in the network, and
is necessary when the base station is distributing a secure message (for
example, a query on some event of interest or a confidential instruction)
to all the nodes in the network. To tolerate node failures, the group key
should be updated occasionally. They employ the µTESLA protocol [11] to
distribute group keys.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 465

Unlike the schemes discussed above, LEAP assumes the network is safe
during its initialization phase. Otherwise, the pairwise key establishment
procedure can be attacked by adversaries.

15.3.22 Key Infection

The schemes described above assume a strong adversary model in which
adversaries are able to compromise any node in a network. In such a
case, security protocols are usually heavyweighted such that they can deal
with worst-case attacks. However, in many scenarios, adversaries may not
have enough resources or the ability to launch such worst-case attacks.
Therefore, Anderson, Chan, and Perrig assumed a weak adversary model
[28] where adversaries can only eavesdrop a small portion of communi-
cations between sensor nodes during node deployment phase. Hence, a
node wishing to communicate securely with other nodes simply generates
a symmetric key and sends it in the clear to its neighbors.

15.4 Public Key Management
A symmetric key algorithm is efficient on low-end devices, but the schemes
described in the previous section are rather complex for sensor networks
in terms of communication overhead and memory cost. As a contrast, pub-
lic key technology is easier to manage and more resilient to node com-
promise, although it is much more computationally expensive. Each node
can keep its private key secret and only publish its public key; therefore,
compromised nodes cannot provide any clue to the private keys of non-
compromised nodes.

15.4.1 RSA Algorithm

RSA [4] is a very popular public key algorithm that can provide authentica-
tion and encryption services. At first, a node generates two large random
and distinct primes p and q, each roughly the same size. Then it computes
n = pq and φ = (p − 1)(q − 1). A random integer e is selected, such that
1 < e < φ and gcd(e, φ) = 1. After that, a unique integer d is calculated
such that 1 < d < φ and ed = 1 (mod φ). Hence, the node’s public key is
(n, e) and its private key is d.

When a node B needs to secretly send a message to node A, B can
represent the message as an integer m in the interval [0, n − 1], compute
c = meA mod nA using A’s public key, and send c to A. Node A can use its
private key dA to decrypt c to get m = cdA mod nA.

To authenticate itself to node A, node B can generate a public message
m and calculate a signature s = mdB mod nB , then send a certificate 〈m, s〉

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

466 � Resource, Mobility, and Security Management

to A. Node A can verify node B’s identity by checking whether m is equal
to seB mod nB .

However, the exponential operation in RSA is very expensive, especially
for large exponents. Hence, the focus of applying RSA in sensor networks is
to develop efficient implementations on resource-constrained sensor plat-
forms. RSA is rarely used to provide encryption in sensor networks. The
private key operation of RSA is more expensive than public key operation
because d is usually rather larger than e. TinyPK [29] uses RSA to provide
the authentication service for external parties when they access sensor net-
works. In particular, each external party carries an RSA-based certificate
and shows it to the sensor network. Sensors can verify the certificate and
authenticate the external party. To simplify the signature verification on the
sensor side, the RSA public key was chosen as e = 3. To avoid the secret
key operation on the external party side, the certificate is calculated by a
central network manager and preloaded to the external party.

15.4.2 Diffie-Hellman Algorithm

The Diffie-Hellman algorithm [3] is usually used to achieve key agreement
between communication parties. At first, two nodes A and B agree on two
parameters g and p, where g is a generator of Zp and p is a large prime.
Then node A chooses a secret integer xA and sends gxA mod p to B, and
B also chooses a secret integer xB and sends gxB mod p to A. The shared
key between A and B can be calculated as K AB = (gxA)xB = (gxB)xA =
gxAxB mod p.

To make the Diffie-Hellman algorithm viable on sensor platforms, TinyPK
chooses the base of exponentiation operation as g = 2 [29].

15.4.3 Elliptic Curve Cryptography

Recently, elliptic curve cryptography (ECC) [30,31] has become a very hot
topic in academia and industry, and is seen as the basis for the next-
generation security infrastructure. The reason is that algorithms based on
ECC is more efficient than RSA and Diffie-Helman at the same security
level. The fundamental operation underlying RSA is the modular exponen-
tiation in integer rings. Its security stems from the difficulty in factorizing
large integers. Currently, there only exist sub-exponential algorithms to
solve the integer factorization problem.2 ECC operates on groups of points

2 Given a positive integer n = pq, where p and q are large pairwise distinct primes,
find p and q.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 467

over elliptic curves and derives its security from the hardness of the Elliptic
Curve Discrete Logarithm Problem (ECDLP).3 The best algorithms known
for solving ECDLP are exponential. Hence, ECC can achieve the same level
of security as RSA with smaller key sizes. For example, 163-bit ECC can
provide comparable security to conventional 1024-bit RSA [32]. Under the
same security level, the smaller key sizes of ECC offer merits of faster com-
putational efficiency, as well as memory, energy, and bandwidth savings;
thus, ECC is better suited for resource-constrained devices.

In [32], Diffie-Hellman over ECC is suggested to achieve key agreement
between sensor nodes. An elliptic curve E with a generator G is chosen
as a global public parameter. Node A chooses a secret integer xA and
sends xAG to node B, and B as well chooses a secret integer xB and
sends xBG to A. The shared key between A and B can be calculated as
K AB = xB(xAG) = xA(xBG) = xAxBG .

Huang et al. [33] consider a sensor network consisting of some secure
managers and many sensor nodes. An ECC-based authenticated key estab-
lishment protocol is proposed for the key establishment between secure
managers and sensor nodes. To reduce the computational overhead of
sensor nodes, most computationally expensive public key operations are
put on the secure manager side.

15.4.4 Efficient Implementations

Computational efficiency is a critical issue in applying public key technol-
ogy to sensor platforms. Gaubatz, Kaps, and Sunar [34] showed the feasibil-
ity of implementing public key technology with the right selection of algo-
rithms and associated parameters, optimization, and low-power techniques.
The conceptual implementations of the Rabin scheme [35] and NtruEncrypt
scheme [36] were described as examples. In many cases, high-level pro-
gramming languages cannot be optimized for specific hardware platforms,
and therefore assembly languages are required to further reduce computing
time. Gura et al. [37] evaluated the assembly language implementations of
ECC and RSA on the Atmel ATmega128 processor [38], which is popular for
sensor platforms such as Crossbow MICA Motes [6]. In their implementa-
tion, a 160-bit point multiplication of ECC requires only 0.81 seconds, while
1024-bit RSA public key operation and private key operation require 0.43
and 10.99 seconds, respectively.

3 Given a generator G of a finite cyclic point group G over an elliptic curve E (Fq) and
a point Q in the group, find an element x ∈ Fq such that xG = Q.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

468 � Resource, Mobility, and Security Management

15.4.5 Authentication of Public Keys

Another critical issue in applying public key technology is the authenticity
of public keys. A public key should be really owned by the node that claims
to have the public key. Otherwise, adversaries can easily impersonate any
node by claiming its public key and launch a man-in-the-middle attack. For
example, a malicious node C can impersonate node B to node A and also
impersonate A to B if A and B cannot verify the public key of each other.
In this way, node C can act as an invisible router and learn all the messages
between A and B. The conventional solution to public key authentication is
to use a certificate signed by a trustful certificate authority (CA). Therefore,
node B can send its public key with corresponding certificate to node A
such that A can verify the correctness of the certificate with the well-known
public key of CA. Node B can verify the authenticity of A’s public key by
following the same procedure.

Although technical advances have made the usage of public key tech-
nology viable in WSNs, public key algorithms are still more expensive than
symmetric key algorithms. The authentication of public keys can incur high
energy consumption because it is likely to be performed many times. Du,
Wang, and Ning [39] developed public key authentication scheme based
on a symmetric key technique, the Merkle tree [40]. In the Merkle tree, each
parent is a hash of the concatenation of its children, and each leaf is cor-
responding to a node and is calculated as a hash of the node ID and its
public key. When a sensor wants to authenticate its public key, it attaches
its public key with the siblings of the tree nodes along the path from the
leaf of the sensor to the root. Other sensors verify whether they can recover
the root and decide the authenticity of the public key.

15.4.6 Location-Based Keys

Based on identity-based cryptography [41], where the publicly known iden-
tity information of a node is used as its public key, Zhang et al. [42,43]
proposed the notion of location-based keys by binding the private keys of
individual nodes to both their IDs and locations.

The following parameters are chosen and preloaded to each node: a
q-order cyclic group G1 of points on an elliptic curve; a pairing over the
elliptic curve e : G1 × G1 → G2 that satisfies the bilinear property, that is,

e(P + Q, R + S) = e(P , R)e(P , S)e(Q, R)e(Q, S) (15.14)

a hash function maps a bit string to a point in G1 (i.e., H1 : {0, 1}∗ → G1);
and another hash function maps a bit string to an integer, H2 : {0, 1}∗ → Z

∗
q .

For a node A, an identity-based key (IBK), I K A = kH1(A), is preloaded
to A, where k is a network-wide secret parameter. After deployment, the

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 469

position of A is used to derive a location-based key (LBK), LKA = kH1(posA).
The LBK is encrypted by the IBK and securely transmitted to A.

When node A needs to communicate with node B, A first sends an
authenticate request, including its position posA and a nonce nA to B. If
node A is in the transmission range of node B, B returns a reply includ-
ing its own location posB , a random nonce nB , and an authenticator VB

calculated as:

VB = H2(e(LK B , H1(posA)) ‖ nA ‖ nB ‖ 0) (15.15)

If node A finds that node B is in its transmission range, A proceeds to
compute a verifier V ′

B as:

V ′
B = H2(e(H1(posB), LK A) ‖ nA ‖ nB ‖ 0) (15.16)

If and only if both A and B have the authentic LBKs corresponding to their
claimed locations, they can have:

e(LK B , H1(posA)) = e(H1(posB), LK A)

= (e(H1(posB), H1(posA)))k (15.17)

After verifying the equality of V ′
B and VB , A can ascertain that B is an

authentic neighbor with the claimed location posB . Node A, in return,
should send to B its own authenticator VA computed as:

VA = H2(e(H1(posB), LK A) ‖ nA ‖ nB ‖ 1) (15.18)

Then, node B can determine whether A is an authentic neighbor with
the claimed location posA. Based on this three-way handshaking, nodes A
and B can achieve mutual authentication and establish an authentic link
between them. Meanwhile, a pairwise key between A and B is established
as (e(H1(posB), H1(posA)))k.

The location-based keys have perfect resilience to node compromise in
that no matter how many nodes are compromised, the location-based keys
of non-compromised nodes as well as their pairwise keys always remain
secure. It has been shown in [42,43] that the solution can defend against a
wide range of attacks, such as the Wormhole attack, the Sybil attack, and
the node replication attack, in sensor networks.

15.5 Open Issues
In this section we discuss some problems that need to be fully studied.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

470 � Resource, Mobility, and Security Management

15.5.1 Memory Cost

High security and lower overhead are two objectives that a key manage-
ment protocol needs to achieve. Although there have been several pro-
posals for key establishment in sensor networks, they can hardly address
these two requirements, as discussed in this chapter. Strong security proto-
cols usually require large amounts of memory cost, as well as high-speed
processors and large power consumption. However, they cannot be eas-
ily supported due to the constraints on hardware resources of the sensor
platform.

It is well known that in wireless environments, transmission of one
bit can consume more energy than computing one bit. Therefore, com-
munication overhead can dominate the entire power consumption. In key
management protocols, direct key establishment does not require commu-
nication or only a few rounds of one-hop communications, but indirect key
establishment is performed over multi-hop communications. To reduce the
multi-hop communication overhead, high secure connectivity, which is the
probability of direct key establishment between a pair of nodes, is desir-
able. However, highly secure connectivity requires more key materials in
each node, which is usually impratical, especially when the network size
is large.

Considering the above two issues, memory cost can be the major bot-
tleneck in designing key management protocols. How to reduce memory
cost while still maintaining a certain level of security and overhead is a very
important issue.

15.5.2 End-to-End Security

The major merit of symmetric key technology is its computational efficiency.
However, most current symmetric key schemes for WSNs aim at the link
layer security — not the transport layer security — because it is impractical
for each node to store a transport layer key for each of the other nodes in
a network due to the huge number of nodes.

However, end-to-end communication at the transport layer is very com-
mon in many WSN applications. For example, to reduce unnecessary traffic,
a fusion node can aggregate reports from many source nodes and forward
a final report to the sink node. During this procedure, the reports between
source nodes and the fusion node and the one between the fusion node
and the sink node should be secured. In hostile environments, however,
any node can be compromised and become malicious. If one of the inter-
mediate nodes along a route is compromised, the message delivered along
the route can be exposed or modified by the compromised node. Employ-
ing end-to-end security can effectively prevent message tampering by any
malicious intermediate node.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 471

Compared with symmetric key technology, public key technology is
expensive but has flexible manageability and supports end-to-end security.
A more promising approach to key establishment in WSNs is to combine the
merits of both symmetric key and public key techniques, in that each node
is equipped with a public key system and relies on it to establish end-to-end
symmetric keys with other nodes. To achieve this goal, a critical issue is to
develop more efficient public key algorithms and their implementations so
that they can be widely used on sensor platforms.

How to prove the authenticity of public keys is another important prob-
lem. Otherwise, a malicious node can impersonate any other normal node
by claiming its public key. Identity-based cryptography is a shortcut to avoid
the problem. Currently, most identity-based cryptographical algorithms op-
erate on elliptic curve fields, and pairing over elliptic curves is widely used
in the establishment of identity-based symmetric keys. However, the pair-
ing operation is very costly, comparable to or even more expensive than
RSA. Therefore, fast algorithms and implementations are the major tasks of
researchers.

15.5.3 Efficient Symmetric Key Algorithms

There is still a demand for the development of more efficient symmetric
key algorithms because encryption and authentication based on symmet-
ric keys are very frequent in the security operations of sensor nodes. For
example, in the link layer security protocol TinySec [44], each packet must
be authenticated, and encryption can also be triggered if critical packets
are transmitted. Therefore, fast and cost-efficient symmetric key algorithms
should be developed.

15.5.4 Key Update and Revocation

Once a key has been established between two nodes, the key can act as
a master key and be used to derive different sub-keys for many purposes
(e.g., encryption and authentication). If each key is used for a long time,
it may be exposed due to cryptanalysis over the ciphertexts intercepted by
adversaries. To protect the master key and those sub-keys from cryptanal-
ysis, it is wise to update keys periodically. The period of update, however,
is difficult to choose. Because the cryptanalysis capability of adversaries is
unknown, it is very difficult to estimate how long it takes for adversaries
to expose a key by cryptanalysis. If the key update period is too long, the
corresponding key may also be exposed. If it is too short, frequent updates
can incur large overhead.

A related problem is key revocation. If one node is detected to be ma-
licious, its key must be revoked. However, key revocation has not been

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

472 � Resource, Mobility, and Security Management

thoroughly investigated. Although Chan et al. [45] proposed a distributed
revocation protocol, it is only based on the random-pairwise key scheme
[14], and cannot easily be generalized into other key establishment
protocols.

15.5.5 Node Compromise

Node compromise is the most detrimental attack on sensor networks. Be-
cause compromised nodes have all the authentic key materials, they can
result in very severe damage to WSN applications and cannot be detected
easily. How to counteract node compromise remains under investigation.

Most current security protocols try to defend against node compromise
through careful protocol design such that the impact of node compro-
mise can be restricted to a small area. However, a hardware approach
is more promising. With advances in hardware design and manufacturing
techniques, much stronger, tamper-resistant, and cheaper devices can be
installed on the sensor platform to counteract node compromise.

15.6 Conclusion
Key management is the most critical component in the design of security
protocols for wireless sensor networks, and has been drawing intensive
interest from both academia and industry. In this chapter we surveyed
current solutions to the key management issue in wireless sensor networks
and shed light on future directions of the issue in wireless sensor networks.
There are many challenges in the design of key management schemes
due to various resource limitations and salient features of wireless sensor
networks. Secure and efficient key management schemes are still under
explorations.

References
[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on

sensor networks,” IEEE Communication Magazine, Vol. 40, No. 8, pp. 102–
114, August 2002.

[2] C.E. Shannon, “Communication theory of secrecy systems,” Bell Sys. Tech.
J., Vol. 28, pp. 656–715, October 1949.

[3] W. Diffie and M.E. Hellman, “New directions in cryptography,” IEEE Trans-
actions on Information Theory, Vol. IT-22, No. 6, pp. 644–654, 1976.

[4] R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
Vol. 21, No. 2, pp 120–126, February 1978.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 473

[5] A. Wood and J. Stankovic, “Denial of service in sensor networks,” IEEE
Computer, pp. 54–62, October 2002.

[6] Crossbow Technology, http://www.xbow.com/
[7] R. Anderson and M. Kuhn, “Tamper resistance — a cautionary note,” Proc.

2nd USENIX Workshop on Electronic Commerce, Oakland, CA, November
18–21, 1996, pp 1–11.

[8] R. Blom, “An optimal class of symmetric key generation systems,” in Proc.
of EUROCRYPT ’84, 1985, pp. 335–338.

[9] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung,
“Perfectly-secure key distribution for dynamic conferences,” in Advances
in Cryptology C CRYPTO 92, LNCS 740, 1992, pp. 471–486.

[10] S. Basagni, K. Herrin, D. Bruschi, and E. Rosti, “Secure pebblenets,” ACM
Mobihoc’01, Long Beach, CA, 2001.

[11] A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, and D.E. Culler, “SPINS: security
protocols for sensor networks,” Wireless Networks, Vol. 8, pp. 521–534,
2002.

[12] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error Correction Codes,
North-Holland, New York, 1977.

[13] L. Eschenauer and V. Gligor, “A key management scheme for distributed
sensor networks,” in ACM CCS2002, Washington, D.C., 2002.

[14] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for
sensor networks,” in Proceedings of the 2003 IEEE Symposium on Security
and Privacy, May 11–14, 2003, p. 197.

[15] R.D. Pietro, L.V. Mancini, and A. Mei, “Random key-assignment for secure
wireless sensor networks,” in Conference on Computer and Communica-
tions Security (CCS’03), 2003.

[16] W. Du, J. Deng, Y.S. Han, and P.K.Varshney, “A pairwise key pre-
distribution scheme for wireless sensor networks,” in CCS’03, Washington,
D.C., October 27–30, 2003.

[17] D. Liu and P. Ning, “Establishing pairwise keys in distributied sensor net-
works,” CCS’03, Washington, D.C., 2003.

[18] J. Hwang and Y. Kim, “Revisiting random key pre-distibution schemes
for wireless sensor networks,” in Proceedings of the 2nd ACM Workshop
on Security of Ad Hoc and Sensor Networks (SASN’04), October 25, 2004,
Washington, D.C.

[19] H. Chan and A. Perrig, “Pike: peer intermediaries for key establishment in
sensor networks,” in IEEE INFOCOM’05, March 2005.

[20] Y. Zhou and Y. Fang, “A scalable key agreement scheme for large scale
networks,” 2006 IEEE International Conference on Networking, Sensing
and Control (ICNSC’06), Fort Lauderdale, FL, April 23–25, 2006.

[21] D. Liu, and P. Ning, “Location-based pairwise key establishments for rela-
tively static sensor networks,” in ACM Workshop on Security of Ad Hoc and
Sensor Networks (SASN’03), October 2003.

[22] W. Du, J. Deng, Y.S. Han, S. Chen, and P.K. Varshney, “A key management
scheme for wireless sensor networks using deployment knowledge,” in
IEEE INFOCOM 2004, Hong Kong, March 2004.

[23] D. Huang, M. Mehta, D. Medhi, and L. Harn, “Location-aware key manage-
ment scheme for wireless sensor networks,” in Proceedings of the 2nd ACM

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

474 � Resource, Mobility, and Security Management

Workshop on Security of Ad Hoc and Sensor Networks (SASN’04), October
25, 2004, Washington, D.C.

[24] Y. Zhou, Y. Zhang, and Y. Fang, “LLK: a link-layer key establishment
scheme in wireless sensor networks,” IEEE WCNC’05, New Orleans, LA,
March 2005.

[25] Y. Zhou, Y. Zhang, and Y. Fang, “Key establishment in sensor networks
based on triangle grid deployment model,” in Proc. IEEE MILCOM’05,
Atlantic City, NJ, October 17–20, 2005.

[26] D. Liu, P. Ning, and W. Du, “Group-based key pre-distribution in wireless
sensor networks,” ACM WiSe’05, September 2005.

[27] S. Zhu, S. Setia, and S. Jajodia, “LEAP: efficient security mechanism for
large-scale distributed sensor networks,” in ACM CCS’03, Washington, D.C.,
October 27–31, 2003.

[28] R. Anderson, H. Chan, and A. Perrig, “Key infection: smart trust for smart
dust,” in Proceedings of the 12th IEEE International Conference on Network
Protocols (ICNP’04), 2004.

[29] R. Watro, D. Kong, S. Cuti, C. Gardiner, C. Lynn, and P. Kruus, “TinyPK: se-
curing sensor networks with public key technology,” SASN’04, Washington,
D.C., October 25, 2004.

[30] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
Vol. 48, pp. 203–209, 1987.

[31] V. Miller, “Uses of elliptic curves in cryptography,” Lecture Notes in Com-
puter Science 218: Advances in Cryptology — CRYPTO’85. Springer-Verlag,
Berlin, 1986, pp. 417–426.

[32] D.J. Malan, M. Welsh, and M.D. Smith, “A public-key infrastructure for key
distribution in TinyOS based on elliptic curve cryptography,” First IEEE
International Conference on Sensor and Ad Hoc Communications and Net-
works (SECON’04), Santa Clara, CA, October 2004.

[33] Q. Huang, J. Cukier, H. Kobayashi, B. Liu, and J. Zhang, “Fast authen-
ticated key establishment protocols for self-organizing sensor networks,”
ACM WSNA’03, San Diego, CA, 2003.

[34] G. Gaubatz, J. Kaps, and B. Sunar, “Public key cryptography in sensor
networks — revisited,” ESAS’04, 2004.

[35] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, Boca Raton, FL, 1996.

[36] J. Hoffstein, J. Pipher, and J.H. Silverman, “NTRU: a ring based public key
cryptosystem,” Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, Vol. 1433,
pp. 267–288, 1998.

[37] N. Gura, A. Patel, A. Wander, H. Eberle, and S.C. Shantz, “Comparing elliptic
curve cryptography and RSA on 8-bit CPUs,” CHES’04, 2004.

[38] Atmel Corporation, http://www.atmel.com/
[39] W. Du, R. Wang, and P. Ning, “An efficient scheme for authenticating public

keys in sensor networks,” ACM MobiHoc’05, May 2005.
[40] R. Merkle, “Protocols for public key cryptosystem,” Proceedings of the IEEE

Symposium on Research in Security and Privacy, April 1980.
[41] D. Boneh and M. Franklin, “Identify-based encryption from the weil pair-

ing,” in Proc. CRYPTO’01, Ser. LNCS, Vol. 2139, Springer-Verlag, 2001, pp.
213–229.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

Key Management in Wireless Sensor Networks � 475

[42] Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Securing sensor networks with
location-based keys,” IEEE WCNC’05, March 2005.

[43] Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Location-based compromise-
tolerant security mechanisms for wireless sensor networks,” IEEE Jounal
on Selected Areas in Communications, Special Issue on Security in Wireless
Ad-Hoc Networks, Vol. 24, No. 2, pp. 247–260, 2006.

[44] C. Karlof, N. Sastry, and D. Wagner, “TinySec: a link layer security ar-
chitecture for wireless sensor networks,” in the Second ACM Confer-
ence on Embedded Networked Sensor Systems (SensSys’04), Baltimore, MD,
November 2004.

[45] H. Chan, V. Gligor, A. Perrig, and G. Muralidharan, “On the distribution and
revocation of cryptographic keys in sensor networks,” IEEE Transactions
on Dependable and Secure Computing, Vol. 2, No. 3, Jul.–Sep. 2005.

P1: Rakesh

June 28, 2006 17:19 1914 AU8036˙C015

