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I. INTRODUCTION 
As a result of the advancement of wireless technology and the proliferation of handheld wireless 

terminals, recent years have witnessed an ever-increasing popularity of wireless networks, ranging 
from wireless Local Area Networks (WLANs) and wireless wide-area networks (WWANs) to 
mobile ad hoc networks (MANETs). In WLANs (e.g., the Wi-Fi technology) or in WWANs (e.g., 
2.5G/3G/4G cellular networks), mobile hosts communicate with an access point or a base station 
that is connected to the wired networks. Obviously, only one hop wireless link is needed for 
communications between a mobile host and a stationary host in wired networks. In contrast, there is 
no fixed infrastructure such as base stations or access points in a MANET. Each node in a MANET 
is capable of moving independently and functioning as a router that discovers and maintains routes 
and forwards packets to other nodes. Thus, MANETs are multi-hop wireless networks by nature. 
Note that MANETs may be connected at the edges to the wired Internet.  

Transmission control protocol (TCP) is a transport layer protocol which provides reliable end-
to-end data delivery between end hosts in traditional wired network environment. In TCP, 
reliability is achieved by retransmitting lost packets. Thus, each TCP sender maintains a running 
average of the estimated round trip delay and the average deviation derived from it. Packets will be 
retransmitted if the sender receives no acknowledgment within a certain timeout interval (e.g., the 
sum of smoothed round trip delay and four times the average deviation) or receives duplicate 
acknowledgments. Due to the inherent reliability of wired networks, there is an implicit assumption 
made by TCP that any packet loss is due to congestion. To reduce congestion, TCP will invoke its 
congestion control mechanisms whenever any packet loss is detected. Since TCP is well tuned, it 
has become the de facto transport protocol in the Internet that supports many applications such as 
web access, file transfer and email. Due to its wide use in the Internet, it is desirable that TCP 
remains in use to provide reliable data transfer services for communications within wireless 
networks and for those across wireless networks and the wired Internet. It is thus crucial that TCP 
performs well over all kinds of wireless networks in order for the wired Internet to extend to the 
wireless world.  

Unfortunately, wired networks and wireless networks are significantly different in terms of 
bandwidth, propagation delay, and link reliability. The implication of the difference is that packet 
losses are no longer mainly due to network congestion; they may well be due to some wireless 
specific reasons. As a matter of fact, in wireless LANs or cellular networks, most packet losses are 
due to high bit error rate in wireless channels and handoffs between two cells, while in mobile ad 
hoc networks, most packet losses are due to medium contention and route breakages, as well as 
radio channel errors. Therefore, although TCP performs well in wired networks, it will suffer from 



serious performance degradation in wireless networks if it misinterprets such non-congestion-
related losses as a sign of congestion and consequently invokes congestion control and avoidance 
procedures, as confirmed through analysis and extensive simulations carried out in [4, 5, 7, 18-21]. 
As TCP performance deteriorates more seriously in ad hoc networks compared to WLANs or 
cellular networks, we divide wireless networks into two large groups: one is called one-hop 
wireless networks that include WLANs and cellular networks and the other is called multi-hop 
wireless networks that include MANETs.   

To understand TCP behavior and improve TCP performance over wireless networks, given these 
wireless specific challenges, considerable research has been carried out and many schemes have 
been proposed. As the research in this area is still active and many problems are still wide open, 
this chapter serves to pinpoint the primary causes for TCP performance degradation over wireless 
networks, and cover the state of the art in the solution spectrum, in hopes that readers can better 
understand the problems and hence propose better solutions based on the current ones. 

This chapter is organized as follows. We present in Section 2 a brief overview of TCP 
congestion control mechanisms and some current performance enhancement techniques. As the 
challenges TCP is facing differ in one-hop and multi-hop wireless networks and so do the solutions, 
it is suitable to separate them into two sections. Section 3 starts by identifying the challenges 
imposed on the standard TCP in one-hop wireless networks, followed by the classification of some 
existing solutions according to their design philosophy. Among the solutions, there are four large 
categories. The first class of schemes attempts to improve TCP performance by splitting a TCP 
connection into two at the base station or access point. Relying on an intelligent proxy located at 
the base station enforcing tasks such as local retransmission or ACK suppression/regulation, the 
second class eliminates the negative effects of wireless links on TCP. The approaches in the third 
class aim at hiding the characteristics of wireless links from TCP by providing a reliable link layer. 
The last category resolves the problems by slightly modifying TCP at the end systems, e.g., 
selective acknowledgment enabling or fast retransmission. In each class, the solutions are discussed 
in certain details.  

The structure of Section 4 is similar to that of Section 3, except that TCP performance over 
MANETs is the focus. Similarly, current solutions can also be grouped into three camps, according 
to their design philosophy. The first camp incorporates network feedback information into their 
designs to modify TCP’s response to non-congestion-related packet losses while the second camp 
attempts to do so without explicit feedback. Unlike the previous two, the third one starts by tuning 
the lower layers in order for TCP to operate normally, while leaving TCP intact.  

With the understanding that current solutions fail to improve on some critical issues such as 
fairness, Section 5 gives some suggestions on future research issues. Finally, concluding remarks 
are given in Section 6. 

II. OVERVIEW OF TCP 
Before we dive into the detailed discussion of questions such as why TCP performs poorly in 

wireless networks, how TCP performance can be improved, it is necessary to prepare the reader by 
presenting an overview of not only the basic functionality of TCP but also the state-of-the-art in 
TCP. The basic functions of TCP as a transport layer protocol include flow control, error recovery 
and congestion control, while the state-of-the-art techniques include fast retransmission and 
recovery, selective acknowledgment, etc., mainly focusing on how to promptly and effectively 
respond to network congestion.    



A. Basic Functionality of TCP 
It is well known that TCP is a connection-oriented transport protocol that is aimed at 

guaranteeing end-to-end reliable ordered delivery of data packets over wired networks. For this 
purpose, basic functionalities such as flow control, error control, and congestion control are 
indispensable. While these functions have a clean-cut definition of their own, in practice they are 
closely coupled with one another in TCP implementation.  

In TCP, a sliding window protocol is used to implement flow control, in which three windows 
are used, namely, Congestion Window, advertised window, and Transmission Window. Congestion 
window indicates the maximum number of segments (Without causing confusion, the term segment 
and packet are used interchangeably henceforth) that the sender can transmit without congesting the 
network. As shown next in details on congestion control, this number is determined by the sender 
based on the feedback from the network. advertised window, however, is specified by the receiver 
in the acknowledgements it. Advertised window indicates to the sender the amount of data the 
receiver is ready to receive in the future. Normally, it equals to the available buffer size at the 
receiver in order to prevent buffer overflow. Transmission window means the maximum number of 
segments that the sender can transmit at one time without receiving any ACKs from the receiver. 
Its lower edge indicates the highest numbered segment acknowledged by the receiver. Obviously, 
to avoid network congestion and receiver buffer overflow, the size of transmission window is 
determined as the minimum of the congestion window and the receiver’s advertised window. 

To notify the sender that data is correctly received, TCP employs a cumulative 
acknowledgement (ACK) mechanism. In other words, upon the receipt of an ACK, the sender 
knows that all previously transmitted data segments with a sequence number less than the one 
indicated in the ACK are correctly received at the receiver. In the case that an out-of-order segment 
(identified on the basis of sequence numbers) arrives at the receiver, a duplicate ACK is generated 
and sent back to the sender. It is important to note that in wired networks, an out-of-order delivery 
usually implies a packet loss. If three duplicate cumulative ACKs are received, the sender will 
assume the packet is lost. A packet loss is also assumed if the sender does not receive an ACK for 
the packet within a timeout interval called retransmission timeout (RTO), which is dynamically 
computed as the estimated round-trip time (RTT) plus four times the mean deviation. By 
retransmitting the lost packet, TCP achieves reliable data delivery.  

It turns out that in wired networks, almost all the packet losses are due to network congestion 
rather than transmission errors. Thus, in addition to retransmission, TCP responds to packet losses 
by invoking its congestion control mechanism. TCP congestion control is also based on the sliding 
window mechanism described above and consists of two major phases: slow start and congestion 
avoidance. In the slow start phase, the initial congestion window size (cwnd) is set to one 
maximum segment size (MSS) and is incremented by one MSS on each new acknowledgement. 
After cwnd reaches a preset threshold (ssthresh), the congestion avoidance starts and it is increased 
linearly, i.e., it is increased by one segment for each RTT. Upon a timeout, ssthresh is set to the 
half of the current transmission window size (but at least two segments) and the congestion window 
is reduced to 1 MSS. Then slow start mechanism starts again. This procedure is also called the 
additive increase and multiplicative decrease algorithm (AIMD, [25]). The entire congestion 
control algorithm is illustrated in Fig. 1. Note that the sender reacts to three duplicate ACKs in a 
different way, which is described in fast retransmission and fast recovery in the next subsection. 
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Figure 1: TCP congestion window dynamics ([44]) 

 

B. State-of-the-Art in Standard TCP 
Most of the progress made in TCP is centered on error recovery and congestion control. 

Representative innovations include fast transmissions and fast recovery [42], selective 
acknowledgements [31], random early detection (RED, [17]) in routers, and explicit congestion 
notification (ECN, [39]). Notice that depending on what features are included, there are several 
TCP flavors, including TCP Tahoe, TCP Reno, TCP New Reno, etc. Among them, TCP Reno is by 
far most widely deployed. Next, we briefly describe these innovations in the following.   

1) Fast retransmission and fast recovery 
As noted earlier, a packet can be assumed lost if three duplicate ACKs are received. In this case, 

TCP performs a fast retransmission of the packet. This mechanism allows TCP to avoid a lengthy 
timeout during which no data is transferred. At the same time, ssthresh is set to one half of the 
current congestion window, i.e., cwnd, and cwnd is set to ssthresh plus three segments. If the ACK 
is received approximately one round trip after the missing segment is retransmitted, fast recovery is 
entered. That is, instead of setting cwnd to one segment and starting with slow start, TCP sets cwnd 
to ssthresh, and then steps into congestion avoidance phase. However, only one packet loss can be 
recovered during fast retransmission and fast recovery. Additional packet losses in the same 
window may require that the RTO expire before retransmission.  

2) Selective acknowledgment  
Owing to the fact that fast retransmission and fast recovery can only handle one packet loss from 

one window of data, TCP may experience poor performance when multiple packets are lost in one 
window. To overcome this limitation, recently the selective acknowledgement option (SACK) is 
suggested as an addition to the standard TCP implementation.  

The SACK extension adopts two TCP options. One is an enabling option, which may be sent to 
indicate that the SACK option can be used upon connection establishment. The other is the SACK 



option itself, which may be sent by TCP receiver over an established connection if SACK option is 
enabled through sending the first option.  

The SACK option contains up to four (or three, if SACK is used in conjunction with the 
Timestamp option used for RTTM [24]) SACK blocks, which specifies contiguous blocks of the 
received data. Each SACK block consists of two sequence numbers which delimit the range of data 
the receiver has received and queued. A receiver can add the SACK option to ACKs it sends back 
to a SACK-enabled sender. In the event of multiple losses within a window, the sender can infer 
which packets have been lost and should be retransmitted using the information provided in the 
SACK blocks. A SACK-enabled sender can retransmit multiple lost packets in one RTT instead of 
detecting only one lost packet in each RTT.   

3) Random Early Detection (RED) 
Random Early Detection (RED) is a router-based congestion control mechanism that seeks to 

detect incipient congestion and notify some TCP senders of congestion by controlling the average 
queue size at the router. To notify the TCP senders of congestion, the router may mark or drop 
packets, depending on whether the senders are cooperative. As a response, the senders should 
reduce their transmission rate. This is done in two algorithms. The first algorithm is to compute the 
average queue size by using exponential weighted moving average. If we denote by avg and q the 
average queue size and the current queue size, respectively, then avg = (1-wq)*avg + wq*q, where 
wq is the queue weight. The other algorithm is to compute the packet-marking or packet-dropping 
probability pa. If avg falls in between minth and maxth, the packet marking probability pb = maxp 
(avg - minth) / (maxth - minth) and the final marking probability pa = pb/(1 – count*pb), where 
maxp and count are design parameters, respectively, denoting the maximum value for pb and the 
number of packets having arrived since last packet marking or dropping. If avg exceeds maxth, pa 
= 1, which means that the router marks or drops each packet that arrives. Through control over the 
average queue size prior to queue overflow, RED succeeds in preventing heavy network congestion 
and global synchronization as well as improving fairness. Notice that numerous variants of RED 
have been proposed to improve various performance of the original RED [16, 29, 33, and 34]. 

4) Explicit Congestion Notification (ECN) 
Most of current Internet routers employ traditional “drop-tail” queue management. In other 

words, the routers drop packets only when the queue overflows, which could lead to the 
undesirable global synchronization problem as well as heavy network congestion. Recently, active 
queue management (AQM) mechanisms have been proposed since they can detect congestion 
before the queue overflows at the routers and inform TCP senders of the congestion, thereby 
avoiding some of these problems caused by the “drop-tail” policy. In the absence of Explicit 
Congestion Notification (ECN), however, the only choice that is available to AQM for indicating 
congestion to end systems is to drop packets at the routers. With ECN, AQM mechanisms have an 
alternative to allow routers to notify end systems of congestion in the network. 

ECN requires some changes to the header of both IP and TCP. In the IP header, an ECN field 
with two bits is used. By setting this field to specific bits, the router can send an indication of 
congestion to end systems. For TCP, two new flags in the Reserve field of the TCP header are 
specified. By manipulating these two flags, the TCP sender and the TCP receiver can enable ECN 
via negotiation during connection setup; the receiver can inform the sender if it receives congestion 
indications from intermediate routers; and the sender can inform the receiver that it has invoked 
congestion control mechanisms [39].    



III. TCP IN ONE-HOP WIRELESS NETWORKS 
In this section, we focus on TCP performance in one-hop wireless networks, which typically 

include wireless LAN and wireless cellular networks. We first summarize some challenges 
adversely affecting TCP performance. Then, some representative schemes proposed to improve 
TCP performance are described. Notice that in this chapter we focus on how to improve TCP 
performance, so some schemes such as WTCP [41], which attempts to propose a totally different 
transport layer protocol, are not presented here since it is not an improvement scheme based on 
TCP. 

A. Challenges 
Compared with wired networks, one-hop wireless networks have some inherent adverse 

characteristics that will significantly deteriorate TCP performance if no action is taken. In essence, 
these characteristics include bursty channels errors, mobility and communication asymmetry.  

1) Channel Errors 
In wireless channels, relatively high bit error rate because of multipath fading and shadowing 

may corrupt packets in transmission, leading to the losses of TCP data segments or ACKs. If it 
cannot receive the ACK within the retransmission timeout, the TCP sender immediately reduces its 
congestion window to one segment, exponentially backs off its RTO and retransmits the lost 
packets. Intermittent channel errors may thus cause the congestion window size at the sender to 
remain small, thereby resulting in low TCP throughput.  

2)  Mobility 
Cellular networks are characterized by handoffs due to user mobility. Normally, handoffs may 

cause temporary disconnections, resulting in packet losses and delay. TCP will suffer a lot if it 
treats such losses as congestion and invokes unnecessary congestion control mechanisms. The 
handoffs are expected to be more frequent in next generation cellular networks as the micro-cellular 
structure is adopted to accommodate an increasing number of users. Thing could be worse if TCP 
cannot handle handoffs gracefully. Similar problems may occur in wireless LAN, as mobile users 
will also encounter communication interruptions if they move to the edge of the transmission range 
of the access point.   

3) Asymmetry 
In one-hop wireless networks, the wireless link between a base station and a mobile terminal in 

nature is asymmetric. Compared with the base station, the mobile terminal has limited power, 
processing capability, and buffer space. Another asymmetry stems from the vastly different 
characteristics of wired links and wireless links. The former is reliable and has large bandwidth 
while the latter is error-prone and has limited and highly variable bandwidth. For example, the 
bandwidth of a typical Ethernet is 10Mbps (100Mbps or even higher for fast Ethernet) while the 
highest bandwidth for 3G networks is only about 2Mbps. Therefore, the wireless link is very likely 
to become the bottleneck of TCP connections. 

B. Current Solutions 
The quest to overcome the deficiency of TCP over wireless links has been courting extensive 

efforts. Among the various solutions proposed to improve TCP performance, there are four major 
categories: split-connection solutions, proxy-based solutions, link-layer solutions, and end-to-end 
solutions. The split-connection solutions attempt to improve TCP performance by splitting a TCP 
connection into two at the base station so that the TCP connection between the base station and the 
mobile host can be specially tuned for the wireless links. Realizing the base station is a critical 



point, approaches based on proxy put an implicit or explicit intelligent agent at the base station, 
detecting packet losses over wireless links and taking corresponding actions (such as duplicate 
ACK suppression and/or local retransmission) to ensure the TCP sender responds correctly. For the 
third category, a reliable link layer is built by adopting some link error recovery mechanisms, 
seeking to hide link errors from the TCP sender. Unlike the previous three classes, the end-to-end 
approaches enhance TCP by using SACK to quickly recover from multiple packet losses or by 
predicting incoming handoffs to avoid unnecessary congestion control invocation. Next, some 
representative schemes in each category are presented. 

1) Split-connection solutions 
 
Indirect TCP 

Indirect-TCP (I-TCP) [7] protocol proposed by Bakre and Badrinath suggests that any TCP 
connection from a mobile host (MH) to a machine on the fixed network (FH) should be split into 
two separate connections: one between the MH and its base station (BS) over the wireless medium 
and the other between the BS and the FH over the fixed network, as shown in the Fig. 2. A packet 
sent to MH is first received by BS, it then sends an acknowledgment to FH and then the packet is 
forwarded to MH. If MH moves to a different cell while communicating with an FH, the whole 
connection information maintained at the current BS is transferred to the new BS and the new BS 
takes over thereafter. The FH is unaware of this indirection and is not affected when this switch 
occurs. Also, since the end-to-end connection is split, the TCP connection over the wireless link 
can use some wireless-link-aware TCP variation, which may be tailored to handle wireless channel 
errors and handoff disruption. 

 

 
 

Figure 2: I-TCP, splitting a TCP connection into two connections 
 
From the above description, we see that I-TCP separates the congestion control functionality on 

the wireless link from that on the fixed network, which enables the two kinds of links to identify 
different reasons for packet losses and then take corresponding actions. In addition, since the TCP 
connection is broken into two, it is possible for a mobile host to use some lightweight transport 
protocol instead of a full TCP/IP suite to communicate with the base station and access the fixed 
network through the base station. This feature is desirable since a mobile host, as pointed out 



earlier, has limited battery and processing power. The downside of this scheme, however, is the 
following. First, I-TCP violates the end-to-end semantics of TCP acknowledgments, as both the 
wired part and the wireless part of a connection have their own acknowledgments. Second, control 
overhead is considerable as the base station needs to maintain a significant amount of state for each 
TCP connection and all the state information needs to be transferred to the new base station in the 
event of a handoff, which could result in a long delay.  
M-TCP   

M-TCP [9] is another split-connection approach that breaks up a TCP connection between a FH 
and a MH into two parts: one between the FH and the BS, and the other between the BS and the 
MH. What makes it different from I-TCP is that it manages to preserve TCP end-to-end semantics.  

M-TCP is assumed to operate upon the underlying three-level architecture shown in Fig. 3. A 
mobile host (MH) communicates with the BS in the cell. Several BSs are controlled by a supervisor 
host (SH), which, serving a gateway, is connected to the wired network. The authors opt for this 
architecture for two reasons. The first is that the functionalities at a BS can be transferred to SH, 
which may reduce the cost of the network as one SH is in charge of several BSs; the other is that 
the number of handoffs is greatly reduced since a MH roaming from one cell to another need not 
perform handoffs as long as the two cells are controlled by the same SH. 

 
 

Figure 3: Three-level architecture underlying M-TCP 
 
Another important assumption made by M-TCP is that a relatively reliable link layer is 

operating underneath M-TCP to recover losses such that the bit error rate over wireless links is low. 
The implication of this assumption is that TCP performance degradation is mainly due to frequent 
disconnections caused by handoffs.  

M-TCP operates as follows. Assume that the MH has acknowledged bytes up to sequence 
number X, the SH sends an ACK for bytes up to X-1 to the TCP sender. Note that this is different 



from I-TCP in that the SH only sends ACKs to the sender when it receives ACKs from the MH. If 
the SH does not receive ACKs beyond X for some time, the SH will assume this is due to 
temporary wireless link outage. Therefore, it sends an ACK for the last byte X with a zero window 
size. Upon receiving this ACK, the sender will enter persist mode, freezing all its transmission 
states such as RTO and congestion window. When the wireless link is regained, the MH will notify 
the SH by sending a greeting packet. The SH, in turn, informs the sender of this reconnection, 
allowing the sender to resume its transmission from the frozen state. Through this way, the adverse 
efforts of disconnections on TCP performance are gracefully eliminated since no congestion control 
is invoked. 

Some comments are in order. First and foremost, while maintaining end-to-end TCP semantics, 
M-TCP works well under the wireless environment where frequent disconnections between the MH 
and the BS are common. Second, during handoffs from one domain of SH to the domain of another 
SH, little overhead is incurred since compared to I-TCP, a small amount of state is transferred from 
the old SH to the new SH. However, in order to achieve the expected performance improvement, it 
relies largely on its underlying link layer to hide the effects of high bit error rate. 

2) Proxy-based solutions 
 
SNOOP 

Balakrishnan et al. [6] sought to improve TCP performance by modifying the network-layer 
software at a BS while preserving end-to-end TCP semantics. Snoop protocol gets its name because 
it adds a snooping module to network layer, which monitors every packet that passes a BS in either 
direction. In the following, we describe how snoop module deals with packet losses in both 
directions. 

If TCP packets are sent from a FH to a MH, the snoop module caches each packet that has not 
yet been acknowledged by the MH. Meanwhile, the snoop module also keeps track of all the 
acknowledgments sent from the mobile host. The snoop module determines that a packet loss 
occurs by detecting if either it receives a duplicate acknowledgment or its local timer times out. In 
this case, the lost packet is retransmitted if it has been cached. The duplicate acknowledgments, if 
any, are suppressed. Through this way, unnecessary congestion control mechanism invocations are 
avoided since packet losses due to wireless channel errors are hidden from the FH.  

In the case that packets are transmitted from an MH to an FH, since the MH cannot tell whether 
a packet loss is due to errors on the wireless link or due to congestion elsewhere in the network, 
TCP SACK option is used. At the BS, when the snoop module notices a gap in the inbound 
sequence numbers of the packets sent from the MH, selective acknowledgements are sent to the 
MH. Upon receiving such SACKs, SACK-enabled MH will retransmit the lost packets for local 
loss recovery. 

SNOOP is also designed to handle handoffs. Several BSs near a MH will form a multicast group 
and buffer some latest packets sent from the FH. Prior to a handoff, the MH will send control 
messages to determine that a BS with strongest signal should be the primary one, i.e., the one 
forwarding packets to the MH, and that all other BSs just buffer packets. Therefore, both handoff 
latency and packet losses are reduced. 

The major merit of this approach is that, it improves TCP performance through performing local 
retransmissions across the wireless link without affecting end-to-end TCP semantics. On the other 
hand, although TCP performance during handoffs may be improved, considerable overhead is 
incurred for maintaining the multicast BS group and state transfer from one BS to another. Finally, 



it is worth noting that special care needs to be taken to handle the interaction of the snoop module 
retransmission and TCP end-to-end retransmission because SNOOP is similar to link-level 
retransmission approaches over the wireless links. 
Ack Regulator 

Since link layer enhancement schemes are shown to successfully improve TCP performance 
over wireless link, they have been adopted in 3G wireless networks. For example, reliable link-
layer protocols such as RLP [49] and RLC [47] are respectively used in 3G1X [48] and UMTS 
[46]. However, as pointed out in [11], these link layer protocols also introduce increased delay and 
rate variability, which may cause bursty ACK arrivals (called ACK compression [56]) and 
consequently degrade TCP throughput. This effect becomes more pronounced as some channel 
state based scheduling schemes [8] is used in 3G wireless networks as well. 

To reduce such negative effects, Chan and Ramjee ([11]) proposed a network-based solution 
called Ack Regulator, which is implemented at the radio network controller (RNC) to regulate the 
flow of ACKs sent from the mobile host to the TCP sender. Notice that since most applications like 
web browsing mainly use the downlink, this solution is designed for TCP connections toward the 
mobile hosts. The key idea is that, the RNC should control the number of ACKs sent back to the 
sender each time a data packet is transmitted to the mobile host or an ACK arrives from the mobile 
host, such that there is at most one packet loss due to buffer overflow in one window of transmitted 
packets. In this way, the TCP sender operates mainly in the congestion avoidance phase. In this 
scheme, the RNC maintains a data queue for each TCP flow from the sender to the mobile host and 
an ACK queue from the mobile host to the sender. By monitoring the current available buffer space 
and estimating the number of future incoming data packets, the RNC decides how many ACKs it 
should send to the sender each time. Significant performance improvement has been reported, 
which, nevertheless, is achieved at the expense of increased complexity and buffer space at the 
RNC. 
Advertised window control 

While a great deal of effort has been made on the IEEE 802.11 MAC, little research work has 
been focused on the interaction of TCP with WLANs. However, to fully understand TCP behaviors 
over WLAN is very important, as TCP is the de facto transport layer protocol for most applications 
over WLANs. 

In [38], the work by Pilosof et al. has shed some light in better understanding TCP fairness over 
WLANs. Through analysis and simulation, it is discovered that the upstream (from the mobile host 
to the base station) and downstream (from the base station to the mobile host) TCP flows do not 
fairly share the wireless medium, with a throughput ratio between them as high as ten times, in 
favor of upstream flows. They discovered that this ratio is sensitive to the buffer size at the base 
station. In particular, TCP unfairness may fall into four different regions as the buffer size is 
varying. Part of the reason is that given the TCP receiver window size, the downstream TCP 
window size fails to reach the receiver window size if some data packets are lost due to insufficient 
buffer, while upstream TCP window size can reach the receive window size because it can tolerate 
some ACK losses.  

Thus, they proposed to modify the receiver’s advertised window field in the ACKs when they 
pass through the base station. More precisely, given that there are n TCP flows in the WLANs and 
the buffer size at the base station is B, the advertised window size will be set to the minimum of the 
original advertised window size and B/n. Simulations and experiments show that the throughput 
ratio between upstream and downstream TCP flows is almost 1 after adopting this change.       



3) Link-layer solutions 
 
AIRMAIL 

Since TCP performance degradation is partly due to the high bit error rate of the wireless link, it 
is intuitive to shield TCP from such errors. With a reliable link-layer protocol in place, unnecessary 
TCP congestion control invocation due to channel errors can be avoided, and hence TCP 
performance is improved. Based on this idea, a reliable link-layer protocol named AIRMAIL 
(AsymmetrIc Reliable Mobile Access In Link-layer) was proposed in [4]. In AIRMAIL, two well-
known link error recovery techniques, i.e., forward error correction (FEC) and automatic repeat 
request (ARQ) are employed. Moreover, in order to accommodate the asymmetry lying between 
the two ends of a wireless link, i.e., the BS and the MH, AIRMAIL purposely devises some 
asymmetric ARQ error control and window-based flow control techniques as shown in the 
following: 

•  Timers are always at the BS regardless of whether it is transmitting or receiving. Thus all 
timer-related operations are conducted in the BS. 

•  The base station receiver sends its status to a mobile transmitter periodically. However, this 
is not the case for the mobile receiver to send its status to the base station transmitter. Rather, 
the mobile receiver sends status messages based on an event-driven mechanism. The 
difference in the mechanisms of sending status messages is justified by the power constraint 
at the mobile host. 

In addition to ARQ, three levels of FEC, namely bit-level FEC, byte-level FEC, and packet-level 
FEC, have been employed to provide increased error correction capability under different mobile 
environment. 

Several comments on AIRMAIL are in order. First, since AIRMAIL only involves changes at 
the link layer, no modifications need to be made to TCP. Obviously, it fits in well with the layered 
structure of network protocols. Second, when designing ARQ techniques, AIRMAIL takes into 
account the asymmetry between the BS and the MH, a desirable feature which may relieve the 
requirement of computing power on the mobile host and prolong the battery life of the mobile host 
as well. Third, the drawback of AIRMAIL is that it cannot account for temporary disconnections 
due to handoff.  Thus, even though it succeeds in reducing bit error rate over wireless links, it can 
do little to prevent TCP from timing out when an acknowledgment is not received on time because 
of long disconnections. In fact, this observation might apply to various link layer approaches. 
Finally, the interaction between link-layer retransmissions and end-to-end retransmissions can be 
complicated, as shown in [14]. It showed that link-layer retransmission protocols only improve 
TCP performance when the packet error rate exceeds a certain threshold. Further study on the 
interaction is needed in order to improve TCP performance with the aid of the link-layer 
enhancement. 
TULIP 

TULIP (Transport Unaware Link Improvement Protocol) is a TCP-unaware link layer protocol 
that works upon the MAC layer [36]. Because TULIP is targeted for half-duplex wireless links, to 
avoid collision between two opposite data streams, it only passes one packet at a time to the MAC 
layer. The procedure is described as follows. After receiving a TCP packet from the upper layer, 
TULIP passes it to the MAC layer. When starting to transmit the packet, the MAC layer notifies 
TULIP by sending a signal TRANS. Upon reception of TRANS, TULIP starts a timer ∆t1, which is 
estimated as the time duration between the beginning of data packet transmission and the end of the 



reception of a link-layer ACK (or a link-layer ACK piggybacked with a data packet). In the case 
that ∆t1 is underestimated because of packet length variations, the MAC layer will inform TULIP 
by sending another signal WAIT, specifying the additional time ∆t2. Readers are referred to [36] for 
details on how to set ∆t2 as it involves the specific MAC layer mechanism. To locally recover lost 
or corrupted packets due to channel errors, a link-layer selective acknowledgment mechanism is 
used to retransmit packets, which is assigned high priority compared to normal data packets in 
order for fast recovery. Moreover, to save bandwidth over the wireless link, a mechanism called 
MAC acceleration is introduced to piggyback a TCP ACK with the TULIP ACK. Through 
simulation it is shown that TULIP achieves a bit better performance compared to SNOOP in the 
environment where errors are exponentially distributed over the wireless channel.  

4) End-to-end solutions 
 
Fast retransmission 

Fast retransmission is perhaps the simplest end-to-end scheme to improve TCP performance. 
Based on the observation that TCP encounters unacceptably long pauses in communication during 
handoffs which cause increased delays and packet losses, fast retransmission was proposed by 
Caceres and Iftode to overcome this problem [10]. The MH will send duplicate ACKs to the TCP 
sender immediately after the handoff process is completed. In this way, the TCP sender can begin 
retransmission without waiting for the timeout, hence preventing serious throughput drop. 
Selective acknowledgement 

As described earlier, the TCP selective acknowledgment mechanism can allow a SACK-enabled 
sender to retransmit in one RTT multiple lost packets in one transmission window and hence avoid 
continuous timeouts. However, this mechanism does not distinguish the reasons for packet losses 
and still assumes all losses are caused by congestion. Consequently, TCP congestion control 
procedures are inappropriately called for, which throttles the sender’s transmission rate. As shown 
in [5], SACK is useful over the error-prone wireless link where losses occur in bursts.     
Freeze-TCP 

It is observed that most current TCP schemes require base stations to monitor the TCP traffic 
and actively participate in flow control in order to enhance performance. However, such schemes 
might be undesirable or even useless for several reasons. First, to be compatible with currently 
existing infrastructure, it is ideal that no modification should be made to intermediate nodes, since 
such nodes may belong to other organizations and hence are unavailable for modification. Second, 
as network security is becoming increasingly important, end-to-end traffic is likely to be encrypted 
and hence inaccessible to intermediate nodes. As a result, some schemes such as SNOOP, I-TCP or 
M-TCP can no longer work in such scenarios since they all require the base station to access the 
traffic before taking actions. Finally, overly relying on mediation at the intermediate nodes may 
cause a significant amount of control overhead, creating network bottlenecks under heavy traffic 
load.   

To overcome these deficiencies, the author in [22] proposed Freeze-TCP, a true end-to-end TCP 
enhancement scheme. The key idea of this scheme is to exonerate the base station from intervening 
in the end-to-end TCP connections. By constantly observing its received signal strength, a mobile 
host can predict a temporary disconnection due to handoffs or fading. Once such an event is 
predicted, the mobile host sends an ACK to the TCP sender with a zero advertised window size. 
Upon reception of such an ACK, the sender enters a persist mode. That is, the sender freezes all 
retransmission timers and sends zero window probes (ZWP) until the mobile host advertises a non-



zero receiving window size. Since ZWPs are sent out with exponentially backoff, it is possible that 
the sender remains idle even the mobile host has recovered from the disconnection. To tackle this 
problem, the same technique as in [10] is employed. Namely, as soon as the mobile host knows that 
it has reconnected, it will send three duplicate ACKs to the sender, forcing the sender to start fast 
retransmission. The main advantage of this scheme is that it improves TCP performance without 
any modification to the intermediate nodes. However, it could be easily seen that the actual 
performance depends largely on the accuracy with which the mobile host predicts an impending 
disconnection.  

IV. TCP IN MOBILE AD HOC NETWORKS 
TCP performance in mobile ad hoc networks is the focus of this section. It is expected that 

compared to one-hop wireless networks, TCP will encounter more serious difficulty in providing 
end-to-end communications in mobile ad hoc networks, as MANETs are, in essence, 
infrastructureless, self-organizing multi-hop networks, and lacking centralized network 
management. Next, we present the main problems in ad hoc networks, followed by recent solutions.   

A. Challenges 
Some salient characteristics of mobile ad hoc networks, which seriously deteriorate TCP 

performance, include the unpredictable wireless channels due to fading and interference, the 
vulnerable shared media access due to random access collision, the hidden terminal problem and 
the exposed terminal problem, and the frequent route breakages due to node mobility. From the 
point of view of network layered architecture, these challenges can be broken down into five 
categories, i.e., a) the channel error, b) the medium contention, the hidden terminal problem, and 
the exposed terminal problem, c) the mobility, d) the multi-path routing, and e) congestion, whose 
adverse impacts on TCP is elaborated next.  

1) Channel Errors 
The effects of channel errors in ad hoc networks are similar to those in one-hop wireless 

networks except that they are more serious, since a TCP connection now may consist of multi-hop 
wireless links, unlike the situation in cellular networks or wireless LAN where only the last hop is 
wireless. Accordingly, the congestion window size at the sender may shrink more dramatically due 
to channel errors in several wireless hops, resulting in even lower throughput in ad hoc networks.  

2) Medium contention, Hidden terminal, and Exposed terminal problems 
Contention-based medium access control (MAC) schemes, such as IEEE 802.11 MAC protocol, 

have been widely studied and incorporated into many wireless testbeds and simulation packages for 
wireless multi-hop ad hoc networks, where the neighboring nodes contend for the shared wireless 
channel before transmitting. There are three key problems, i.e., the hidden terminal problem, the 
exposed terminal problem, and unfairness. A hidden node is the one that is within the interfering 
range of the intended receiver but out of the sensing range of the transmitter. The receiver may not 
correctly receive the intended packet due to collision from the hidden node. An exposed node is the 
one that is within the sensing range of the transmitter but out of the interfering range of the 
receiver. Though its transmission does not interfere with the receiver, it could not start transmission 
because it senses a busy medium, which introduces spatial reuse deficiency. The binary exponential 
backoff scheme always favors the latest successful transmitter, and hence results in unfairness. 
These problems could be more harmful in multi-hop ad hoc networks than in Wireless LANs as ad 
hoc networks are characterized by multi-hop connectivity. 



MAC protocols have been shown to significantly affect TCP performance [20, 21, 40, 45, 51, 
and 54]. When TCP runs over 802.11 MAC, as [54] pointed out, the instability problem becomes 
very serious. It is shown that collisions and the exposed terminal problem are two major reasons to 
prevent one node from reaching the other when they are in each other’s transmission range. If a 
node cannot reach its adjacent node for several times, it will trigger a route failure, which in turn 
will cause the source node to start route discovery. Before a new route is found, no data packet can 
be sent out. During this process, TCP sender has to wait and will invoke congestion control 
algorithms if it observes a timeout. When it comes down to TCP throughput, serious oscillation will 
be observed.  Moreover, the random backoff scheme used in the MAC layer makes this worse [20]. 
Since large data packet sizes and back-to-back packet transmission both decrease the chance of the 
intermediate node to gain access of the channel, the node has to back off a random time and attempt 
again. After several failed attempts, a route failure is reported. 

TCP may also encounter serious unfairness problems [20, 40, 45, and 54] for the reasons stated 
below:  

•  Topology causes unfairness because of unequal channel access opportunity for different 
nodes. As shown in Fig. 4, where the small circle denotes a node's valid transmission range 
and the large circle denotes a node's interference range, all nodes in a 7-node chain topology 
experience different amount of competitions. There are TCP flows, namely flow 1 from node 
0 to 1 and flow 2 from node 6 to 2. The transmission from node 0 to node 1 experiences 
interference from three nodes, i.e., nodes 1, 2, and 3, while the transmission from node 3 to 
node 2 experience interference from five nodes, i.e., nodes 0, 1, 2, 4, and 5. Flow 1 will 
obtain much higher throughput than flow 2 due to the unequal channel access opportunity.  

•  Backoff mechanism in the MAC may lead to unfairness as it always favors the last 
successfully transmitting node. 

•  TCP flow length influences unfairness. Longer flows implies longer round trip time and 
higher packet dropping probability, leading to lower and more fluctuating TCP end-to-end 
throughput. Through this chain reaction, unfairness is amplified, as the high throughput will 
become higher and the low throughput lower. 
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Figure 4. Node interference in a chain topology 
3)   Mobility 



Mobility may induce link breakage and route failure between two neighboring nodes, as one 
mobile node moves out of the other’s transmission range. Link breakage in turn causes packet 
losses. As we said earlier, TCP cannot distinguish between packet losses due to route failures and 
packet losses due to congestion. Therefore, TCP congestion control mechanisms react adversely to 
such losses caused by route breakages [1, 15, and 27]. Meanwhile, discovering a new route may 
take significantly longer time than TCP sender’s RTO. If route discovery time is longer than RTO, 
TCP sender will invoke congestion control after timeout. The already reduced throughput because 
of losses will further shrink. It could be even worse when the sender and the receiver of a TCP 
connection go into different network partitions. In such a case, multiple consecutive RTO timeouts 
lead to inactivity lasting for one or two minutes even if the sender and receiver finally get 
reconnected. 

Fu et al. conducted simulations by considering mobility, channel error, and shared media-
channel contention [19]. They indicated that mobility-induced network disconnections and 
reconnections have the most significant impact on TCP performance comparing to channel error 
and shared media-channel contention. TCP NewReno merely achieves about 10% of a reference 
TCP’s throughput in such cases. As mobility increases, the relative throughput drops from almost 
0% in a static scenario to 100% in a highly mobile scenario (when moving speed is 20m/sec). In 
contrast, congestion and mild channel error (say 1%) have less visible effect on TCP (with less than 
10% performance drop compared with the reference TCP). 

4)     Multi-path Routing 
Routes in MANETs are short-lived due to frequent link breakages. To reduce delay due to route 

re-computation, some routing protocols such as TORA [35] maintain multiple routes between a 
sender-receiver pair and use multi-path routing to transmit packets. In such a case, packets coming 
from different paths may not arrive at the receiver in order. Being unaware of multi-path routing, 
TCP receiver would misinterpret such out-of-order packet arrivals as a sign of congestion. The 
receiver will thus generate duplicate ACKs that cause the sender to invoke congestion control 
algorithms like fast retransmission (upon reception of three duplicate ACKs). 

5)    Congestion 
It is known that TCP is an aggressive transport layer protocol. Its attempt to fully utilize the 

network bandwidth makes ad hoc networks easily go into congestion. In addition, due to many 
factors such as route change and unpredictable variable MAC delay, the relationship between 
congestion window size and the tolerable data rate for a route is no longer maintained in ad hoc 
networks. The congestion window size computed for the old route may be too large for the newly 
found route, resulting in network congestion as the sender still transmits at the full rate allowed by 
the old congestion window size. 

Congestion/overload may give rise to buffer overflow and increased link contention, which 
adversely affects TCP performance. As a matter of fact, [28] showed the capacity of wireless ad 
hoc networks decreases as traffic and/or competing nodes arise. 

B. Current Solutions 
As is shown in the previous section, there is a magnitude of research work on improving TCP 

performance over one-hop wireless networks. However, many of these mechanisms are designed 
for infrastructure-based networks and depend on the base stations in distinguishing the error losses 
from congestion losses. Since mobile ad-hoc networks do not have such an infrastructure, they are 
hard to be applied in mobile ad-hoc networks directly. 



More recently, several schemes have been proposed to improve TCP performance over mobile 
ad hoc networks. We classify the schemes into three groups, based on their fundamental 
philosophy: TCP with feedback schemes, TCP without feedback schemes, and TCP with lower 
layer enhancement schemes. Through the use of feedback information to signal non-congestion-
related causes of packet losses, the feedback approaches help TCP distinguish between true 
network congestion and other problems such as channel errors, link contention, and route failures. 
On the other end of the solution spectrum, TCP without feedback schemes makes TCP adapt to 
route changes without relying on feedback from the network, in light of the concern that feedback 
mechanisms may bring about additional complexity and cost in ad hoc networks. The third group, 
lower layer enhancement schemes, starts with the idea that TCP sender should be hidden from any 
problems specific in ad hoc networks while lower layers such as routing layer and MAC layer need 
to be tailored with TCP’s congestion control algorithms in mind. As expected, this idea guarantees 
that TCP end-to-end semantics is maintained for ad hoc networks to seamlessly internetwork with 
the wired Internet. In the following, we present some representative schemes according to the 
aforementioned taxonomy. 

1) TCP with Feedback Solutions 
 
TCP-F 

In the mobile ad hoc networks, topology may change rapidly due to the movement of mobile 
hosts. The frequent topology changes result in sudden packet losses and delays. TCP misinterprets 
such losses as congestion and invokes congestion, leading to unnecessary retransmission and loss 
of throughput. To overcome this problem, TCP-F (TCP-Feedback) [12] was proposed so that the 
sender can distinguish between route failure and network congestion. Similar to Freeze-TCP and 
M-TCP discussed above, the sender is forced to stop transmission without reducing window size 
upon route failure. As soon as the connection is reestablished, fast retransmission is enabled.  

TCP-F relies on the network layer at an intermediate node to detect the route failure due to the 
mobility of its downstream neighbor along the route. A sender can be in an active state or a snooze 
state. In the active state, transport layer is controlled by the normal TCP. As soon as an 
intermediate node detects a broken route, it explicitly sends a route failure notification (RFN) 
packet to the sender and records this event. Upon reception of the RFN, the sender goes into the 
snooze state, in which the sender completely stops sending further packets, and freezes all of its 
timers and the values of state variables such as RTO and congestion window size. Meanwhile, all 
upstream intermediate nodes that receive the RFN invalidate the particular route in order to avoid 
further packet losses. The sender remains in the snooze state until it is notified of the restoration of 
the route through a route reestablishment notification (RRN) packet from an intermediate node. 
Then it resumes the transmission from the frozen state. The state machine of TCP-F is shown in 
Fig. 5. 



 
Figure 5. The TCP-F state machine [12] 

 
TCP-ELFN 

Holland and Vaidya proposed another feedback-based technique, the Explicit Link Failure 
Notification (ELFN) [23, 32]. The goal is to inform the TCP sender of link and route failures so 
that it can avoid responding to the failures as if congestion occurs. ELFN is based on DSR [26] 
routing protocol. To implement ELFN message, the route failure message of DSR is modified to 
carry a payload similar to the “host unreachable” ICMP message. Upon receiving an ELFN, the 
TCP sender disables its congestion control mechanisms and enters a “stand-by” mode, which is 
similar to the snooze state of TCP-F mentioned above. Unlike TCP-F using an explicit notice to 
signal that a new route has been found, the sender, while on stand-by, periodically sends a small 
packet to probe the network to see if a route has been established. If there is a new route, the sender 
leaves the stand-by mode, restores its RTO and continues as normal. Recognizing most of popular 
routing protocols in ad hoc networks are on demand and route discovery/rediscovery is event 
driven, periodically sending a small packet at the sender is appropriate to restore route with mild 
overhead and without modification to the routing layer.  

Through explicit route failure notification, TCP-EFLN and TCP-F allow the sender to instantly 
enter snooze state and avoid unnecessary retransmissions and congestion control which wastes 
precious MH battery power and scarce bandwidth. With explicit route reestablishment notification 
from intermediate nodes or active route probing initiated at the sender, these two schemes enable 
the sender to resume fast transmission as soon as possible.  But neither of these two considers the 
effects of congestion, out-of-order packets, or bit errors, which are quite common in wireless ad 
hoc networks. In addition, both TCP-ELFN and TCP-F use the same parameter sets including 
congestion window size and RTO after reestablishment of routes as those before the route failure, 
which may cause problem because congestion window size and RTO are route specific. Using the 
same parameter sets helps little to approximate the available bandwidth of new route if the route 
changes significantly.      
ATCP 

ATCP (Ad hoc TCP) [30] also utilizes the network layer feedback. The idea of this approach is 
to insert a thin layer called ATCP between IP and TCP, which ensures correct behavior in the event 
of route failures as well as high bit error rate. The TCP sender can be put into a persist state, 
congestion control state or retransmit state, respectively, corresponding to the packet losses due to 
route breakage, true network congestion and high bit error rate. Note that unlike the previous two 
feedback-based approaches, packet corruption caused by channel errors has also been tackled. The 
sender can choose an appropriate state by learning the network state information through explicit 
congestion notification (ECN) messages and ICMP “Destination Unreachable” messages.  



The state transition diagram for ATCP at the sender is shown in Fig. 6. Upon receiving a 
“Destination Unreachable” message, the sender enters the persist state. The TCP at the sender is 
frozen and no packets are sent until a new route is found, so the sender does not invoke congestion 
control. Upon receipt of an ECN, congestion control is invoked without waiting for a timeout event. 
If a packet loss happens and the ECN flag is not set, ATCP assumes the loss is due to bit errors and 
simply retransmits the lost packet. In case of Multi-path routing, upon receipt of duplicate ACKs, 
TCP sender does not invoke congestion control, because multi-path routing shuffles the order in 
which segments are received. So ATCP works well when the multi-path routing is applied.  

ATCP is considered to be a more comprehensive approach in comparison with TCP-F and TCP- 
ELFN in that it accounts for more possible sources of deficiency including bit errors and out of 
order delivery due to multipath routing. Through re-computation of congestion window size each 
time after route reestablishment, ATCP may adapt to change of routes. Another benefit of ATCP is 
that it is transparent to TCP, and hence nodes with and without ATCP can interoperate.  
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Figure 6. State transition diagram for ATCP at the sender [30] 

 
In summary, as shown by the simulations, these feedback-based approaches improve TCP 

performance significantly while maintaining TCP’s congestion control behavior and end-to-end 
TCP semantics. However, all these schemes require that the intermediate nodes have the capability 
of detecting and reporting network states such as link breakages and congestion. Enhancement at 
the transport layer, network layer, and link layer are all required. It deserves further research on the 
ways to detect and distinguish network states in the intermediate nodes.  

 
2) TCP without Feedback Solutions 

 

Adaptive Congestion Window Limit Setting 
Based on the observation that TCP’s congestion control algorithm often over-shoots, leading to 

network overload and heavy contention at the MAC layer, Chen et al. [13] proposed an adaptive 



congestion window limit (CWL, measured in the number of packets) setting strategy to 
dynamically adjust TCP’s CWL according to the current round-trip hop-count (RTHC) of the path, 
which can be obtained from routing protocols such as DSR. More precisely, the CWL should never 
exceed the RTHC of the path. 

The rationale behind this scheme is very simple, as shown in the following. It is known that to 
fully utilize the capacity of a network, a TCP flow should set its CWL to the bandwidth-delay 
product (BDP) of the current path, where a path’s BDP is defined as the product of the bottleneck 
bandwidth of the forward path and the packet transmission delay in a round trip. On the other hand, 
the CWL should never exceed the path’s BDP in order to avoid network congestion. In ad hoc 
networks, if we assume the size of a data packet is S and the bottleneck bandwidth along the 
forward and return paths is the same and equal to bmin, it can be easily seen that the delay at any 
hop along the path is less than the delay at the bottleneck link, i.e., S/bmin. Since the size of a TCP 
acknowledgement is normally smaller than that of the data packet, according to the definition of the 
BDP, we know BDP <= RTHC×S. Therefore, the CWL, which is bounded by the path’s BDP, 
should never exceed the RTHC of the path. 

This upper bound can be further tightened when the IEEE 802.11 MAC layer protocol is 
adopted. In fact, it is shown that, in a chain topology, a tighter upper bound exists, which is 
approximately 1/5 of the RTHC of the path. According to this tighter upper bound, the maximum 
RTO is set to a relatively small value of 2 seconds, which enables TCP to probe the route quickly 
should it break (due to false link failure). Simulation results showed that this simple but useful 
strategy is able to improve TCP-Reno performance by 8% to 16% in a dynamic MANET.  
TCP-DOOR 

TCP-DOOR [50] attempts to improve TCP performance by detecting and responding to out-of-
order (OOO) packet delivery events and thus avoiding invoking unnecessary congestion control. 
By definition, OOO occurs when a packet sent earlier arrives later than a subsequent packet. In ad 
hoc networks, OOO may happen multiple times in one TCP session because of route changes. 

 In order to detect OOO, ordering information is added to TCP ACKs and TCP data packets. 
OOO detection is carried out at both ends: the sender detects the Out-of-Order ACK packets and 
the receiver detects the Out-of-Order data packets. If the receiver detects OOO, it should notify the 
sender, considering the fact that it is the sender who takes congestion control actions. Once the TCP 
sender knows of an OOO condition, it may take one of the two responsive actions: temporarily 
disabling congestion control and instant recovery during congestion avoidance. The first action 
means that, whenever an OOO condition is detected, TCP sender will keep its state variables such 
as RTO and the congestion window size constant for a time period T1. The second action means 
that, if during the past time period T2, the TCP sender has already entered the state of congestion 
avoidance, and it should recover immediately to the state prior to such congestion avoidance. The 
main reason is the detection of OOO condition implies that a route change event has just occurred. 

However, OOO can be detected only after a route has recovered from failures. As a result, TCP-
DOOR is less accurate and responsive than a feedback-based approach that is able to determine 
whether congestion or route errors occur, and hence report to the sender at the very beginning. 
Furthermore, it may not work well with multi-path routing since multi-path routing may cause 
OOO as well. Therefore, it is concluded that TCP-DOOR may work as an alternative to the 
feedback-based approach to improve TCP performance over ad hoc network, if the latter is not 
available.   



Fixed RTO 
In TCP congestion control, TCP doubles the RTO and retransmits the oldest unacknowledged 

packet when the retransmission timer expires. Although this exponential backoff mechanism of the 
RTO could handle network congestion gracefully, it is no longer suitable in MANETs when the 
loss of packets or ACKs is caused by temporary route breakages, as discussed earlier. In such a 
case, the RTO should be recalculated, if possible, according to the new route instead of being 
doubled. Furthermore, when the new route is established, TCP sender should start the transmission 
immediately instead of waiting for the expiration of retransmit timer.  

In the fixed RTO approach [15], no feedback from lower layers is needed. Rather, a heuristic is 
employed to distinguish route failures and congestion. When timeouts occur consecutively, i.e., an 
ACK is not received before the second RTO expires, the sender assumes a route failure rather than 
network congestion takes place. Therefore, the unacknowledged packet is retransmitted again 
without doubling the RTO. The RTO remains fixed until the route is re-established and the 
retransmitted packet is acknowledged. By adopting this strategy, the TCP sender avoids waiting for 
a long period of time before attempting to retransmit. This fast retransmission would force routing 
protocol especially like AODV [37] and DSR to repair routes fast, which in turn leads to a large 
congestion window on average and high TCP throughput. Actually, this technique complements 
TCP-DOOR. 

3) Lower Layer Enhancement Solutions 
 
Routing Layer Enhancement 

A framework termed Atra, due to Anantharaman et al., aims to improve TCP performance over 
ad hoc networks by enhancing routing layers [3]. Three mechanisms, called Symmetric Route 
Pinning (SRP), Route Failure Prediction (RFP), and Proactive Route Errors (PRE), are introduced 
to minimize the probability of route failures, to predict route failures in advance, and to minimize 
the latency in conveying route failure information to source, respectively. Since asymmetric path 
would increase the probability of route failure for a connection, in the first mechanism, the ACK 
path of a TCP connection is always kept the same as the data path. Based on the progression of 
signal strengths of packet receptions from the concerned neighbor, the second mechanism enables 
the node to predict the occurrence of link failure more accurately. Finally, with PRE, when a link 
failure is detected, all sources that have used the link in the past certain period are informed of the 
link failure. This mechanism reduces the latency involved in the route failure information delivery 
and consequently reduces the number of packet losses and also triggers early alternate route 
computations. 
Link Layer Enhancement 

Fu et al. [18] have discussed the interaction between TCP and 802.11 MAC. Their studies reveal 
two interesting results. First, given a specific network topology and flow pattern, there exists a TCP 
window size, say W*, at which TCP throughput is maximized since the best spatial reuse can be 
achieved; further increasing the window size will reduce throughput. However, the standard TCP 
protocol does not operate around W*, typically with an average window much larger than W*. As a 
result, TCP experiences throughput reduction due to reduced spatial reuse and increased packet 
loss. In the simulated scenarios, 4% to 21% throughput reduction from maximum throughput is 
observed. Second, most packet drops experienced by TCP are not due to buffer overflow, but due 
to link-layer contention that are incurred by hidden terminals. They showed that contention drops 
exhibit a load-sensitive loss feature: as the injected TCP packets exceed W* and further increase, 



the link dropping probability becomes non-negligible and increases accordingly; after the injected 
TCP packets exceed another threshold W, the link dropping probability saturates and flattens out. It 
turns out that the link-layer dropping probability is not significant enough to make the average TCP 
window oscillate around W*, which subsequently leads to suboptimal TCP throughput.  

Therefore, two link layer techniques were proposed in [18] to improve TCP efficiency: a Link-
RED (Random Early Detection) algorithm to tune the wireless link’s packet dropping probability 
and an adaptive link-layer pacing scheme to reduce the medium contention. The Link-RED 
algorithm attempts to maintain the optimum congestion window size at the TCP sender. At the link 
layer each node measures the average number of the retries for recent packet transmissions. 
Normally, when the TCP sender increases the congestion window size and injects more packets 
into the network, this average number will increase, as more packets will aggravate medium 
contention. The head-of-line packet is dropped from the buffer or marked as congested with a 
probability calculated based on this average number. Once it detects packet losses or the congestion 
flag in the ACKs, the TCP sender invokes the congestion control algorithm that could help 
maintain the congestion window size around the optimum value and hence improve TCP’s 
throughput.  

The goal of adaptive link-layer pacing is to alleviate the medium contention especially when the 
congestion window size exceeds the optimum value. It is enabled from within the Link-RED 
algorithm. When a node (which just sends a packet) notices its average number of retries is less 
than a predefined threshold, it calculates its backoff time as usual. Otherwise, it increases the 
backoff period by an interval equal to the transmission time of the previous data packet, and backs 
off accordingly. 
Neighborhood RED 

As described in the previous subsection on challenges, TCP exhibits serious unfairness in ad hoc 
networks as a result of the combination of MAC-inherent problems such as medium contention, the 
hidden terminal problem, and the exposed terminal problem. As these problems are likely to exist 
in nodes which are located in a neighborhood, Xu et al. [53] proposed a scheme named 
neighborhood RED (NRED) that seeks to improve TCP fairness from the point of view of a 
neighborhood. By definition, a node’s neighborhood consists of the node itself and the nodes which 
can interfere with this node’s signal. To make things simpler, a node’s neighborhood considered in 
the scheme is comprised of the node itself and its one-hop and two-hop neighbors. 

The key idea of NRED is that each node forms a distributed queue of a neighborhood based on 
the individual queues maintained at every node located in the node’s neighborhood, and the RED 
scheme can be applied to the distributed queue to address the fairness issue, as it has proven to be 
effective, in wired networks, in improving fairness among TCP flows by controlling average queue 
size at routers. 

The NRED scheme boils down to three algorithms, namely, Neighborhood Congestion 
Detection (NCD), Neighborhood Congestion Notification (NCN), and Distributed Neighborhood 
Packet Drop (DNCP). Instead of counting on each node actively advertising its own queue size 
information and then measuring the neighborhood queue size, which may cause a large amount of 
overhead or even aggravate congestion, NCD intelligently gets around the difficult task by 
monitoring channel utilization. Normally, channel utilization can serve as an indicator of the queue 
size, based on the observation that channel utilization around a node is likely to increase when the 
queues at its neighboring nodes build up. An early congestion is assumed to take place as the 
channel utilization exceeds a certain threshold. If congestion is detected, the node will calculate the 



packet dropping probability and send it in a NCN packet to its neighbors, provided certain 
conditions are met in order to avoid “overreaction”. The neighbors, upon the reception of such 
notification, will drop some packets according to DNCP.   

Simulation studies show that the NRED can improve TCP fairness to some extent in ad hoc 
networks. However, the price paid is that the aggregate throughput in the network is actually 
reduced, which shows there is still room for further improvement.  

 

V. FUTURE RESEARCH DIRECTIONS 
 

At this point, after we discussed the challenges and visited some representative solutions, it is 
well recognized that in order for TCP to deliver a comparable performance in wireless networks to 
that in wired networks, quite a few critical issues need to be addressed. Note that compared with its 
one-hop counterparts, ad hoc networks require more efforts to handle as things are much more 
complicated. In this section we discuss some of these open issues for which searching for a better 
solution demands special efforts. It is worthy noting that we do not mean to list all. Rather, we 
concentrate on those that we believe are most important.  

A. TCP Fairness 
TCP unfairness becomes pronounced in wireless LANs [38]. In mobile ad hoc networks, the 

unfairness problem is more severe. It is shown that in a mobile ad hoc network with multiple flows, 
the throughput can be significantly different among competing flows. This phenomenon is 
particularly evident when comparing flows of short paths to those of long paths [20]. Compared 
with the considerable effort paid to improve TCP end-to-end throughput, fairness is a critical issue 
that deserves more attention. In fact, this insufficiency can be seen from the number of proposed 
scheme targeted for fairness: among all the schemes we present in this chapter, only advertised 
window control and Neighborhood RED address this issue, although a few schemes have touched 
upon fairness. Since bandwidth over wireless links is very limited bandwidth compared with that 
over wired links, it is crucial for every flow to fairly share the bandwidth in wireless networks. 
Therefore, more mature approaches are highly expected. 

B. Interactions among different layers 
Layered network architecture brings a myriad of advantages. At the same time, it requires a 

close look at the interactions among different layers when designing a good scheme. Currently, 
many solutions are focused on one specific layer, attempting to isolate the problem and solve it. It 
is true that TCP might perform better with a highly effective and efficient link layer or routing 
layer, e.g., an MAC protocol which can quickly resolve medium contentions, or a mobility-aware 
routing protocol which can gracefully handling route changes. However, this approach may be 
problematic or even counterproductive, as suggested in [14]. Furthermore, as many factors such as 
bursty channel errors, medium access contention, and route breakage are all contributing to TCP 
throughput deterioration in mobile ad hoc networks, a unified solution is justified which takes into 
account the interaction among different layer. We thus argue that a cross-layer approach seems 
more desirable and promising.   

C. Compatibility with the Wired Internet 
For the purpose of internetworking with the wired Internet as required in future pervasive 

mobile computing, whatever TCP is designed for ad hoc networks should be fully compatible with 



the Internet. This quest for compatibility translates into two requirements for future research. First, 
TCP’s end-to-end semantics must be maintained. Second, TCP performance should be considered 
when TCP connections span both the wired networks and mobile ad hoc networks.  

VI. CONCLUSIONS 
As the assumption made by TCP that any packet loss is due to network congestion is no longer 

valid in wireless networks, TCP performs poorly in such networks. In this chapter, we point out the 
major reasons for this performance degradation. In particular, factors such as error-prone wireless 
channels and handoffs result in the poor TCP performance over one-hop wireless networks, while, 
aside from these factors, other factors such as medium access contention, frequent route changes, 
and breakages are considered to lead to the poor TCP performance over multi-hop wireless 
networks. Compared with one-hop wireless networks, we can see it is more difficult to make TCP 
perform well in multi-hop wireless networks.  

 This chapter presents the state-of-the-art in recent efforts to improve TCP performance. Given 
the reasons, almost all the proposed schemes attempt to achieve better TCP performance with either 
of the two ideas: TCP should be capable of distinguishing non-congestion-related packet losses 
from congestion caused packet losses such that corresponding actions can be taken to deal with the 
losses; or non-congestion-related losses should be reduced such that TCP can work normally 
without any modifications. Interestingly enough, there seems little study attempting to combine 
these two ideas.  

Again, we choose to present the proposed schemes after separating those for one-hop wireless 
networks from those for multi-hop wireless networks for the purpose of clarity. In the realm of one-
hop wireless networks, there are four groups of schemes, i.e., split-connection approaches, proxy-
based approaches, link-layer enhancement approaches, and end-to-end approaches. According to 
[5], a TCP-aware reliable link-layer protocol such as SNOOP performs best. However, TULIP is 
claimed to deliver better performance than SNOOP under some circumstances. In case of frequent 
and long disconnections, M-TCP appears to perform well. In the realm of multi-hop wireless 
networks, there are also three groups of schemes, namely, TCP with feedback approaches, TCP 
without feedback approaches, and lower layer enhancement approaches.  In conclusion, feedback-
based schemes seem to be able to react more quickly to non-congestion-related packet losses, thus 
to be more effective in enhancing TCP performance [50]. However, the price to be paid is that they 
are more difficult to implement, for they require end nodes and intermediate nodes to cooperate 
with each other. On the other hand, approaches without feedback information are relatively simple 
to implement, although the performance gain may not be high enough. Meanwhile, some solutions 
by enhancing the link layer and routing layer shed insights into how to reduce non-congestion-
related losses in order to improve TCP performance.  

Finally, although some encouraging improvements have been reported by employing the 
proposed schemes, none of them can work well in all scenarios and meet all the challenges 
mentioned. Therefore, there is still much work to be done in the near future. To serve as guidance 
for future research, some critical issues regarding improving TCP performance and fairness are 
identified.  
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