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Abstract

Nodes in a sensor network may be lost due to power exhaustion or malicious attacks. To extend the lifetime of the sen-
sor network, new node deployment is necessary. In military scenarios, adversaries may directly deploy malicious nodes or
manipulate existing nodes to introduce malicious ‘‘new’’ nodes through many kinds of attacks. To prevent malicious nodes
from joining the sensor network, access control is required in the design of sensor network protocols. In this paper, we
propose an access control protocol based on Elliptic Curve Cryptography (ECC) for sensor networks. Our access control
protocol accomplishes node authentication and key establishment for new nodes. Different from conventional authentica-
tion methods based on the node identity, our access control protocol includes both the node identity and the node boot-
strapping time into the authentication procedure. Hence our access control protocol cannot only identify the identity of
each node but also differentiate between old nodes and new nodes. In addition, each new node can establish shared keys
with its neighbors during the node authentication procedure. Compared with conventional sensor network security solu-
tions, our access control protocol can defend against most well-recognized attacks in sensor networks, and achieve better
computation and communication performance due to the more efficient algorithms based on ECC than those based on
RSA.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Due to the significant advances of hardware
manufacturing technology and developments of effi-
cient software algorithms, a network of a large num-
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ber of small and low-cost sensors through wireless
communications, i.e., Wireless Sensor Network,
has become technically and economically feasible
and been drawing intensive interests from both aca-
demic and industrial areas [1]. Usually, a wireless
sensor network is deployed in a designated area
without any fixed infrastructure where sensor nodes
cooperate with each other to perform various
applications.

To save manufacturing cost, a sensor node is
usually built as a small device, which has limited
memory, a low-end processor, and is powered by
a battery [2]. The constrained resources result in
limited computation and communication capabilities.
.
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After several weeks or months of operation, some
nodes in the network may exhaust their power
because of the uneven distribution of traffic load.
Therefore new node deployment is necessary in this
case.

Besides the natural loss of sensor nodes, a sensor
network is also susceptible to malicious attacks in
unattended and hostile environments. Some sensor
nodes may be destroyed by adversaries so that the
entire network may become useless. Hence, new
sensor nodes need to be deployed. However, an
adversary can also deploy malicious nodes into the
network. These malicious nodes may easily eaves-
drop messages or insert false reports [2]. In addition,
an intelligent adversary may launch tricky attacks
from the inside of the sensor network by manipulat-
ing existing sensor nodes. A sensor node may be
compromised due to the lack of tamper resistance
[3] so that all the secrets in it are exposed to the
adversary. Then the adversary may use the compro-
mised node to launch other more serious attacks
[4–8], which cause fatal havoc [9,10] in the sensor
network.

Recently, many schemes [2,11–16] were proposed
to protect sensor networks. They may prevent exter-
nal attackers from eavesdropping messages or
inserting false reports. However, they can hardly
defend against internal attacks [4–8]. Though sev-
eral techniques [4–8] were proposed to counteract
the internal attacks, each of them is only targeted
to one specific attack by using different approaches
and hardware assumptions. It is very difficult to
integrate those techniques into a uniform hardware
platform. Even if the integration is possible, it may
cost a lot of resources and deviate from the low cost
consideration.

In this paper, we analyze the internal attacks in
[4–8]. We observe that the common trick under
these attacks is that they manipulate existing nodes
to introduce malicious ‘‘new’’ nodes, which are
indistinguishable from legitimate new nodes under
current sensor network security technology. Those
introduced ‘‘new’’ nodes could be accepted by other
normal nodes as legitimate ones. Based on this
observation, we design an access control protocol
for sensor networks to prevent malicious nodes,
no matter whether they are directly deployed by
adversaries or introduced ‘‘new’’ ones, from partic-
ipating in sensor networks. A new node should
prove that it not only has correct identity but also
is truly new to be admitted into the sensor network.
Besides the node identity which is widely used in
authentication, we introduce the node bootstrap-
ping time, which is the time when the new node
bootstraps itself to join the sensor network, into
the authentication procedure to differentiate mali-
cious ‘‘new’’ nodes, which are actually old nodes,
from legitimate new nodes. Unlike the conventional
approaches in [4–8] that attempt to detect malicious
nodes after they join sensor networks, our access
control protocol can prevent malicious nodes from
joining sensor networks at the very beginning.
Moreover, key establishment is also included in
our access control protocol to help the new node
establish shared keys with its neighbors so that it
can perform secure communications with them.

The rest of this paper is organized as follows. We
analyze most typical internal attacks in Section 2.
The details of our access control protocol are
described in Section 3. Some security analysis and
performance evaluations are carried out in Sections
4 and 5. We finally conclude the paper in Section 6.

2. Review of attacks

In military applications sensor networks are
often deployed in hostile environments. An adver-
sary can directly deploy malicious nodes, say node
B in Fig. 1(a), to eavesdrop messages sent out or
received by normal nodes or even inject false reports
to disrupt the network functionalities [2,9,10]. In the
Sybil attack [4,17], a malicious node illegitimately
takes on multiple identities. The impersonated iden-
tities may belong to existing nodes or non-existing
nodes. The malicious node may be deployed directly
by adversaries or just a compromised one. In
Fig. 1(b), for example, a node B is compromised
and then impersonates other identities, e.g., node
C. From the point of the view of node A, it is just
like a new node C coming out in its vicinity. It
has been shown that the Sybil attack may pose a
serious threat to distributed storage, routing proto-
cols [10], data aggregation, voting, fair resource
allocation, misbehavior detection [4], etc. In the
node replication attack [5], an adversary intention-
ally puts many replicas of a compromised node,
say node B in Fig. 1(c), at many places, say the
vicinity of node A, in the network to incur inconsis-
tency. Node A may take node B as its new neighbor.
Like the Sybil attack, the node replication attack
can also render adversaries the abilities to subvert
data aggregation, misbehavior detection and voting
protocols by injecting false data or suppressing
legitimate data [5]. In the Wormhole attack [6], an
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Fig. 1. Attacks. (a) A malicious node B is deployed in the vicinity of node A. (b) The Sybil attack in which a compromised node B claims a
new identity C in the vicinity of node A. (c) The node replication attack in which a copy of the compromised node B is deployed in the
vicinity of node A. (d) The Wormhole attack in which an adversary tunnels packets between node A and node B so that one node finds a
new neighbor which is actually the image of the other node.
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adversary tunnels packets between two distant
places in the sensor network. In Fig. 1(d), for exam-
ple, the adversary deploys two special devices into
the vicinities of node A and node B, respectively.
These two devices share a secret broadband channel
and tunnel packets through the secret channel
between nodes A and B. The consequence is that
node A may find a new node B coming out in its
neighborhood, and vice versa. This attack may dis-
tort the network topology by making two distant
nodes believe they are neighbors, thus becoming a
serious attack to routing protocols [6].

3. Our protocol

3.1. Outline

New node deployment is inevitable because of
the loss of sensor nodes. A deployed new node,
however, may not be a legitimate one as is shown
in Section 2. It may be a malicious node directly
deployed by adversaries, or an introduced ‘‘new’’
node. Those malicious ‘‘new’’ nodes are indistin-
guishable from legitimate new nodes under current
sensor network security technology, and thus will
be accepted by other normal nodes as legitimate
ones. To prevent malicious nodes from joining sen-
sor networks, access control should be enforced to
control sensor node deployment. Usually, an access
control mechanism should accomplish two tasks:

1. Node authentication: Through authentication a
deployed node proves its identity (ID) to its
neighboring nodes and proves that it has the
right to access the sensor network.

2. Key establishment: Shared keys should be estab-
lished between a deployed node and its neighbor-
ing nodes to protect communications.

A preloaded public key certificate can be used to
prove the identity of a new node. When the new
node is deployed into the sensor network, its neigh-
bors may verify the certificate to check whether the
new node has a legitimate identity. By using this ID
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authentication, adversaries are prevented from
directly deploying malicious nodes because they do
not have corresponding certificates. However, the
ID authentication is not enough to protect the sen-
sor network. In the Sybil attack, the node replica-
tion attack and the Wormhole attack, an
adversary in fact could manipulate existing nodes
to introduce malicious ‘‘new’’ nodes. Those old
nodes have preloaded certificates, so the ‘‘new’’
nodes also have legitimate identities. Hence, we
need to differentiate those old nodes from new
nodes to further protect the sensor network.

A solution to solve the problem is to involve a
timestamp into the authentication procedure. It is
a common solution to solving the freshness prob-
lems in our real lives. For example, the tickets we
buy for movies or football games carry timestamps
which show when the tickets are valid. The similar
idea can also be applied to the design of our access
control protocol for sensor networks. After a sensor
node is deployed into a sensor network, it will
bootstrap itself at a preset time to join the sensor
network. The difference between an old node and
a new node is that they have different bootstrapping
times. Hence, we may use the bootstrapping time as
the timestamp into our access control protocol.

Our access control protocol uses a preloaded
certificate which includes both ID information and
bootstrapping time to authenticate the identity of
a new node. The certificate is generated by a Certi-

fication Authority (CA), e.g., the administrator of
the sensor network. In the certificate the node ID
information and its bootstrapping time are signed
by CA’s private key to protect their integrities, so
that adversaries cannot falsify the ID and the boot-
strapping time. When the new node is deployed into
the sensor network, it can show its certificate to its
neighbors. The neighbors can verify the ID and
the bootstrapping time with the CA’s public key.
A new node can be accepted into the sensor network
only if it has a correct identity and its bootstrapping
time is within a tolerance period of current time.

Our cryptographic tool is the Elliptic Curve Cryp-

tography (ECC) [18,19]. Compared to RSA [20],
ECC is seen to be the standard for the next genera-
tion cryptographic technology. The reason is that
ECC can achieve the same level of security with
smaller key sizes. It has been shown that 160-bit
ECC provides comparable security to 1024-bit
RSA and 224-bit ECC provides comparable security
to 2048-bit RSA [21]. Under the same security level,
smaller key sizes of ECC offer merits of faster com-
putational efficiency, as well as memory, energy and
bandwidth savings, thus ECC is better suited for the
resource constrained devices. Due to the merits of
ECC, our access control protocol uses 160-bit
ECC as the underlying cryptographic infrastructure.
Particularly, the signature operation in our protocol
is based on the Elliptic Curve Digital Signature

Algorithm (ECDSA) [21], and the shared key is
established according to the Diffie–Hellman [22]
algorithm over ECDLP.

3.2. Assumptions

We assume that sensor nodes are stationary so
that if a node finds a new node in its neighborhood,
the new node must be either a newly deployed node
or a node introduced by adversaries. All sensor
nodes have the same transmission range and com-
municate with each other via bi-directional wireless
links. Each node has a unique, integer-valued, non-
zero ID. We assume that all sensor nodes are loosely
synchronized. Each sensor node has a preset boot-
strapping time. After being deployed into the sensor
network, each sensor node bootstraps itself at its
bootstrapping time to join the sensor network.
Two sensor nodes may have the same bootstrapping
time if they are deployed simultaneously. A possible
collision at the MAC layer may occur if the two
nodes bootstrap themselves simultaneously. How-
ever, we assume that the MAC-layer protocol has
collision resolution mechanisms to solve the prob-
lem [23]. Hence, each node can finish bootstrapping
within a tolerance time interval after its bootstrap-
ping time. Though node compromise is usually
unavoidable, compromising is not a trivial job. We
assume that each sensor node can sustain a toler-
ance time interval before it is compromised, which
is also assumed by previous work [3,24].

3.3. Predeployment phase

Before a sensor network is deployed, the CA
chooses a set of network parameters including: a
finite field Fq, where q is a large odd prime of at least
160 bits; an elliptic curve E over Fq (denoted by
EðFqÞ hereafter); a cyclic group G ¼ hGi of points
over the elliptic curve EðFqÞ, where G is the genera-
tor of the group and has an order n of at least
160 bits, with n > 4

ffiffiffi

q
p

; the CA’s private key
j 2 Z�n ¼ f1; 2; . . . ; n� 1g; the CA’s public key
Q ¼ jG 2 G. The CA never shares its private
key with anyone else. Since ECDLP is a hard
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problem [18,19], no one can derive the CA’s private
key j from the pair hG,Qi. In addition, the CA does
not get involved in the network operation, so adver-
saries have no opportunity to directly attack the CA
to get j.

For each sensor node, say Ni, the CA preloads it
with a set of node parameters including: the elliptic
curve EðFqÞ; the cyclic group G over EðFqÞ; the
CA’s public key Q; the bootstrapping time Ti

when node Ni bootstraps itself to join the sensor
network; the length of bootstrapping phase Li

during which the node is allowed to join the sensor
network; Ni’s private key si 2 Z�n; Ni’s public key
P i ¼ siG ¼ ðxpi; ypiÞ 2 G, where xpi; ypi 2 Fq; the sig-
nature hCi,cii for node Ni, where Ci 2 G and
ci 2 Z�n; a hash function H : f0; 1g� ! Z�n, which
translates a binary sequence into an integer in Z�n.

The signature is calculated according to ECDSA.
The CA first chooses a random number ki 2 Z�n and
then calculates

Ci ¼ kiG ¼ ðxci; yciÞ; ð1Þ

ci ¼ k�1
i ðHðNikT ikLikP iÞ þ jxciÞ ðmod nÞ; ð2Þ

where ‘‘k’’ is the concatenation operator.

3.4. Node deployment

At the very beginning, a network of sensor nodes,
say hundreds or thousands of nodes, is deployed in
a designated area. At a preset time, these sensor
nodes bootstrap themselves and then start to estab-
lish communications. During the network operation
*, Ni, Ti, Li, Pi, C

*, Nj, Tj, Lj, Pj, C

Ni

if Tj >
>

= Ti

if  |Tj  t|  Lj, reject Nj ;
 else { calculate verifier V ; 
     if  V = Cj {

   accept Nj ;
   calculate Kij = siPj;}

     else reject Nj ; } Nj, Ni, { ni }K

Ni, Nj, ni, { nj 

Nj, Ni, nj

_

_

Fig. 2. Handshake between two new nodes. Each of them checks the val
Nj are both new nodes) and the identity of the other node by ECDSA
response procedure.
phase, if some sensor nodes are lost, new sensor
nodes need to be deployed. These new sensor nodes
all have a preset bootstrapping time different from
that of the previously deployed nodes. Hence, with-
out loss of generality, we assume that sensor nodes
are deployed in groups, where sensor nodes in one
group have the same bootstrapping time and the
length of bootstrapping phase but these values for
different groups may be different.

3.5. Node authentication

Every new node should broadcast a message to
inform its neighbors of its existence. For example,
a new node Ni bootstraps itself at time Ti and
broadcasts a message:

Ni ! � : h�;N i; T i; Li; P i;Ci; cii: ð3Þ
Then handshakes between the new node and its
neighbors can be performed for authentication.
Because the neighbors of the new node may include
both new nodes and old nodes, the handshakes can
be divided into two cases: the handshake between
new nodes (Fig. 2) and the handshake between a
new node and an old node (Fig. 3).

3.5.1. Handshake between new nodes
If node Ni also hears a broadcasted message from

another new node Nj, it verifies whether Nj is a legit-
imate new node by doing the following.

Node Ni first compares Nj’s bootstrapping time
Tj with its own bootstrapping time Ti. If Tj P Ti,
then node Tj might be a new node. Actually Tj = Ti
i, ci

j, cj

Nj

if  Ti  >= Tj

if  |Ti  t| > Li, reject Ni ;
else { calculate verifier V ; 

if  V = Ci  {
  accept Ni ; 
  calculate Kij = sjPi ; }

else reject Ni ; }ij

}Kij

_

idity of the bootstrapping time (in this case Tj = Ti because Ni and
. The shared key between them is verified through a challenge–



*, Ni, Ti, Li, Pi, Ci, ci

Ni, Nj, Tj, Lj, Pj, Cj, cj, { nj }Kij

N i Nj

if Ti >= Tj

if |Ti t| > Li, reject Ni ;
else { calculate verifier V ;

if V = Ci {
accept Ni ;
calculate Kij = sjPi ; }

else reject Ni ; }

calculate verifier V ;
if V = Cj {

accept Nj ;
calculate Kij = siPj;}

else reject Nj ; Nj, Ni, nj, { ni }Kij

Ni, Nj, ni

_

Fig. 3. Handshake between a new node and an old node. The old node checks the validity of the bootstrapping time and the identity of the
other node by ECDSA. The new node just checks the identity of the old node by ECDSA. The shared key between them is verified through
a challenge–response procedure.
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if Ni and Nj are both new nodes. The reason of using
‘‘P’’ here is to maintain the software compatibility
so that this procedure can also be used by an old
node to authenticate a new node (refer to Fig. 3).
Node Ni proceeds to verify whether node Nj is a
new node by comparing Tj with its current time t.
If Tj is out of date (jTj � tj > Lj), node Ni simply
drops the received message. Otherwise, node Ni

continues to verify Nj’s identity by ECDSA. Specifi-
cally, node Ni computes

u1 ¼ HðN jkT jkLjkP jÞ; ð4Þ
u2 ¼ c�1

j u1 ðmod nÞ; ð5Þ
u3 ¼ c�1

j xcj ðmod nÞ; ð6Þ
V ¼ u2Gþ u3Q: ð7Þ

If V = Cj, node Ni can make sure that node Nj is a
legitimate new node. This is because if the signature
is valid, the verification equation holds:

V ¼ u2Gþ u3Q ¼ c�1
j u1Gþ c�1

j xciQ

¼ c�1
j ðHðN jkT jkLjkP jÞ þ jxciÞG ¼ kjG ¼ Cj: ð8Þ

After node Ni verifies the identity of node Nj, it
calculates a shared key with its private key and
Nj’s public key, i.e., Kij = siPj = sisjG. Following
the same procedure, node Nj can verify the identity
of node Ni after it hears the broadcasted message
from node Ni and calculate a shared key as Kij =
sjPi = sisjG.
Node Ni and node Nj can make sure that each
other does have the shared key by following the
challenge–response procedure. Node Ni just selects
a nonce ni, encrypts it and sends it to node Nj. If
node Nj has the shared key, it can decrypt the nonce
ni. Then node Nj sends back a message including the
nonce ni and an encrypted nonce nj chosen by itself
to node Ni. Node Ni can also decrypt the nonce nj

and return it to node Nj. The handshake between
node Ni and node Nj is depicted in Fig. 2.

3.5.2. Handshake between a new node and

an old node

When an old node Nj hears the broadcasted mes-
sage from the new node Ni, it also checks the valid-
ity of Ni’s bootstrapping time and then verifies Ni’s
identity (Fig. 3). After that, node Nj calculates a
shared key with its private key and Ni’s public
key, selects a nonce nj, encrypts the nonce with the
shared key, and replies with the message:

N j ! N i : hNi;N j; T j; Lj; P j;Cj; cj; fnjgKij
i: ð9Þ

Node Ni does not need to check the validity of Nj’s
bootstrapping time because Nj is not a new node.
Adversaries may attack our access control protocol
by utilizing this point. We will analyze this in
Section 4. Node Ni simply verifies Nj’s identity by
following ECDSA. Then node Ni can decrypt the
nonce nj and return it to Nj to show that it is a
legitimate new node. Node Ni also challenges node
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Nj by sending an encrypted nonce ni and requiring
Nj to return it. The whole handshake is depicted
in Fig. 3.

3.6. Key establishment

During the node authentication procedure, the
new node Ni has already established shared keys
with its neighbors, e.g., Nj. Because no efficient algo-
rithm can solve ECDLP within less than exponen-
tial time, we can expect that adversaries cannot
calculate the private keys si and sj given pairs
hG, siGi and hG, sjGi. Hence, the shared key Kij is
kept secret even if adversaries eavesdrop transmit-
ted public keys. Later, the shared key Kij between
node Ni and node Nj can be used to derive different
keys for multiple security services, such as message
encryption and message authentication [2].

4. Security analysis

4.1. New node deployment

By authentication, our access control protocol
can prevent adversaries from directly deploying
malicious nodes into sensor networks. Because
adversaries do not know the private key of the
CA, he/she cannot falsify certificates for malicious
nodes. Our access control protocol can effectively
defend against the Sybil attack, the node replication
attack, and the Wormhole attack. By including the
bootstrapping time in our access control protocol,
a new node is only allowed to join the sensor net-
work during its bootstrapping phase. After that it
becomes an old node. Hence, malicious ‘‘new’’
nodes (Section 2) are prevented from joining the
sensor network at the very beginning, because they
do not have the proper bootstrapping time, and
they are prevented from falsifying the latest
bootstrapping time which does not match their
certificates.

4.2. Eavesdropping and false reports injection

When a new node passes the authentication pro-
cedure, it has already established shared keys with
its neighbors by following the Diffie–Hellman
algorithm over ECDLP. The shared keys can be
used to secure communications among sensor
nodes. Hence, external adversaries are prevented
from eavesdropping or injecting false reports into
the sensor network.
4.3. Node compromise

Usually node compromise cannot be prevented in
sensor networks, unless future advances of hard-
ware design and manufacturing could provide
stronger tamper resistance [3]. Our access control
cannot eliminate the node compromise problem,
but it can prevent adversaries from spreading the
impact of node compromise across the entire
network. Two direct results of node compromise,
the Sybil attack and the node replication attack,
can be prevented by our access control protocol
after the node bootstrapping phase. Moreover,
based on the ECC public key infrastructure, each
sensor node does not know the private keys of other
nodes, and each shared key is only known to two
neighboring nodes who established it. Even if an
adversary compromises a node, he/she can only
know what the compromised node knows, but not
the shared keys between other non-compromised
nodes. Hence, the impact of node compromise is
limited to the vicinity of the compromised node.

If an adversary could compromise a sensor node
during its bootstrapping phase, he/she might use it
to launch other attacks. However, node compromis-
ing is not a trivial task. Usually a sensor node is
designed to be able to sustain compromise for a cer-
tain time interval [3]. The node bootstrapping
phase, however, is usually very short, and in prac-
tice it is reasonable to expect it to be shorter than
the time needed to compromise the node [24]. Hence
we do not need to worry about node compromise
during the node bootstrapping phase.

4.4. Attacks to access control

Our access control protocol tries to solve the new
node deployment problem in hostile environments.
During the handshake between a new node and an
old node, the bootstrapping time of the new node
is verified by the old node, but the new node does
not check the bootstrapping time of the old node
because the old node has been involved in the sensor
network. An adversary may take this opportunity to
trick the new node into establishing communica-
tions with malicious old nodes.

One scenario is that an adversary might intro-
duce a malicious node through the Sybil attack
or the node replication attack into the area where
the new node is to be deployed. When the new
node is deployed, it might establish communica-
tions with the malicious node. To make the attack
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successful, however, the adversary has to activate
the malicious node at the same time when the
new node bootstraps itself and expects that no
other old nodes exist in that area. Otherwise, the
introduced malicious node can be detected by other
old nodes because the malicious node is heard by
those old nodes as a new node but it does not have
the correct bootstrapping time. Under this strict
condition, the probability of this attack is rather
small.

A similar scenario is that an adversary might
launch the Wormhole attack to establish a tunnel
between a new node and another distant old node
so that these two nodes might establish communica-
tions through handshakes. To make the attack suc-
cessful, the adversary still has to establish the tunnel
at the same time when the new node bootstraps
itself and expects that no other old nodes exist
around the new node. Otherwise, the old nodes
around the new node can detect the Wormhole
because they can find a ‘‘new’’ node in their neigh-
borhoods, which is actually an image of the old
node at the other end of the Wormhole. We can
expect that the probability of this attack is also very
small under the strict condition.

Another case is that the adversary just compro-
mises an old node without doing any tricks to
spread its impact. The compromised node stays at
its original location and follows the normal network
protocols. If the new node is deployed into the vicin-
ity of the compromised node, they could establish
communications. This attack is just the node com-
promise attack and currently no solutions can solve
the problem. Our access control protocol cannot
prevent this attack, either, but the impact of the
attack is limited to the vicinity of the compromised
node.

5. Evaluation

5.1. ECC vs. RSA

The length of the bootstrapping phase is critical
for the security performance of our access control
protocol. The shorter the bootstrapping phase is,
the less opportunities adversaries have to attack
the sensor network. Hence a short bootstrapping
phase is desirable to keep the sensor network safe.

Our protocol uses ECC rather than RSA and
Diffie–Hellman over DLP because ECC is more effi-
cient for the same security level. In our protocol, the
most expensive operation is the point multiplication
of the form kP for k 2 Z�n and P 2 G. Every sensor
node needs to perform only three point multiplica-
tions over an elliptic curve: two for node authentica-
tion and one for key establishment. TinyPK [16]
uses RSA to authenticate external parties and
Diffie–Hellman over DLP to establish shared keys
between external parties and sensor nodes. It
requires three modular exponentiation operations
over integer rings for each sensor node: one RSA
public key operation and one RSA private key oper-
ation for node authentication and one DLP opera-
tion for key establishment. It has been shown in
[16,25] that a point multiplication needs less compu-
tation time than a modular exponentiation unless
the exponent is chosen as some specific value. In
TinyPK [16], a public exponent e = 3 is chosen for
computational simplicity, and a 1024-bit RSA mod-
ular exponentiation with e = 3 on MICA1 Motes
[26] needs 14.5 s. The DLP of 2x is evaluated in
[16,25]. It shows that a 1024-bit modular exponenti-
ation 2x, where x is at least 160 bits, needs more
than 50 s on both MICA1 and MICA2 Motes
[26]. However, a 163-bit point multiplication of
ECC on MICA2 Motes requires only 34s [25]. If
assembly languages are used in implementation,
much more decrease of computing time can be
achieved. Gura et al. [27] evaluated the assembly
language implementations of ECC and RSA on
the Atmel ATmega128 processor [28], which is pop-
ular for sensor platform such as Crossbow MICA
Motes. In their implementation, a 160-bit point
multiplication of ECC requires only 0.81 s, while
1024-bit RSA public key operation and private
key operation require 0.43 s and 10.99 s, respec-
tively. Obviously, ECC is more computational
efficient, especially for assembly language imple-
mentations, which makes ECC realistic on current
sensor hardware platforms. This means every sensor
node can finish bootstrapping in a very short time
interval. With the fast advance of hardware tech-
nology, we believe the bootstrapping phase can be
further reduced in future.

In wireless sensor networks, the transmission
energy consumption rate could be over three orders
of magnitude greater than the energy consumption
rates for computing [29]. Most of the performance
overhead is attributable to the increase in packet
size [30]. Compared with a 1024-bit RSA signature,
our access control protocol only introduces a 480-
bit signature when 160-bit ECC is used. Hence by
using ECC instead of RSA our protocol can achieve
much more energy and bandwidth savings.



Y. Zhou et al. / Ad Hoc Networks 5 (2007) 3–13 11
5.2. Comparison with related work

Because currently no solutions can prevent node
compromise in sensor network, the best we can do is
to limit the impact of node compromise to the vicin-
ity of the compromised nodes, i.e., prevent adver-
saries from launching network-scale attacks based
on compromised nodes. Most of symmetric key
techniques, including randomly predistributed keys
[12,13], ID-based keys [14,15], and location-based
keys [31–33] try to improve the resilience to node
compromise by increasing the least number of
sensor nodes that an adversary needs to compro-
mise to destroy the entire network security architec-
ture. These schemes can tolerate a certain number of
compromised nodes. TinyPK [16] is more resilient
to node compromise because of the use of RSA. It
may prevent adversaries from spreading the impact
of node compromise by launching the Sybil attack,
but it cannot detect the node replication attack
because the copies of the compromised nodes also
have legitimate certificates.

To defend against the Sybil attack, several poten-
tial methods were proposed in [4]. One method is
the radio resource testing, which assumes that each
node has enough radio resources and requires
several rounds of broadcasting over multiple chan-
nels, thus leading to a large communication over-
head. Another method is to use the ID-based
symmetric keys. Particularly, each sensor node is
preloaded with a set of keys which are selected from
a global key pool by its node ID. The ID of a sus-
pect node is challenged by a set of validating nodes
based on the keys shared between the suspect node
and the validating nodes. Besides the large amount
of communication overhead, this method may fail
if many sensor nodes are compromised so that most
of the keys in the global key pool are exposed.

Conventional methods to defend against the
node replication attack [5] usually include central-
ized computing based on node locations or the
number of simultaneous connections, which is
vulnerable to the single-point failure. Distributed
detection of the node replication attack was pro-
posed in [5], where each node is assumed to know
its location and it is required to send its location
to a set of witness nodes. If a witness node finds a
contradiction in the location claims of a suspect
node, this suspect node must be a replicated one.
Obviously, this method may introduce a lot of com-
munication overhead. The authentication procedure
in our protocol is performed locally, thus avoiding
much more communication overhead. Moreover,
our protocol does not require each node to know
its own location.

To defend against the Wormhole attack, Hu
et al. proposed to use packet leashes [6] to limit
the maximum range over which packets can be tun-
neled. They require that each node either know its
location or have a tightly synchronized clock so that
this information can be used to calculate the maxi-
mum distance that a relayed packet could travel.
Directional antennas [7] were also used to defend
against the Wormhole attack. However, these
defenses are targeted to ad hoc networks and
require expensive hardware devices, which may be
infeasible for most resource constrained sensor net-
works. Our protocol does not require location infor-
mation and only needs loose synchronized clock.
Wang and Bhargava [8] proposed to use centralized
computing to defend against the Wormhole attack
in sensor networks, in which a controller collects
all nodes’ location information to reconstruct the
network topology such that any topological distor-
tion may be visualized. This approach, however,
causes much intensive communication overhead
and is only suitable for static Wormhole. If adver-
saries move around in the entire network, the loca-
tion of the Wormhole will change dynamically.
Each location change will trigger a new round of
execution of the topology reconstruction algorithm.
Our protocol can prevent dynamic Wormhole by
only involving localized authentication, thus can
save a lot of communication overhead.

6. Conclusion

Currently little work has been reported to
address the access control problem in sensor net-
works. Though many proposals [2,11–16,25,31–33]
try to secure sensor networks, adversaries can still
attack the networks [4–8] by manipulating old nodes
to introduce malicious ‘‘new’’ nodes. In this paper,
we design an access control protocol to prevent
malicious nodes, which may be directly deployed
or just old nodes manipulated by adversaries, from
participating in sensor networks. Besides the node
identity authentication, we introduce the node
bootstrapping time into the node authentication
procedure to differentiate malicious nodes from
legitimate new nodes. Unlike the conventional
approaches in [4–8] that try to detect malicious
nodes after they join sensor networks, our access
control protocol can prevent malicious nodes from
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joining sensor networks at the very beginning. In
addition, key establishment is also realized in our
access control protocol to help the new node estab-
lish shared keys with its neighbors so that it can
perform secure communications with them. Com-
pared with the conventional sensor network security
solutions, our access control protocol can defend
against most of the notorious attacks in sensor net-
works, and achieve better computation and commu-
nication performance due to the usage of the more
efficient algorithms based on Elliptic Curve Crypto-
graphy than those based on RSA.
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