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ABSTRACT: In wireless data networks each transmitter's power needs to
be high enough to reach the intended receivers, while generating minimum
interference on other receivers sharing the same channel. In particular, if
the nodes in the network are assumed to cooperate in routing each oth-
ers' packets, as is the case in ad hoc wireless networks, each node should
transmit with just enough power to guarantee connectivity in the network.
Towards this end, we derive the critical power a node in the network needs
to transmit in order to ensure that the network is connected with probabil-
ity one as the number of nodes in the network goes to in�nity. It is shown
that if n nodes are placed in a disc of unit area in <2 and each node trans-
mits at a power level so as to cover an area of �r2 = (log n+ c(n))=n, then
the resulting network is asymptotically connected with probability one if
and only if c(n)! +1.

1 Introduction

Wireless communication systems consist of nodes which share a common
communication medium: namely, radio. Signals intended for a receiver
cause interference at other receiver nodes. This results in reduced signal
to noise ratio at the latter receivers, and thus, in the lowering of their
information-processing capacity. Hence, it becomes essential to control the
transmitter power such that the information signals reach their intended
receivers, while causing minimal interference for other receivers sharing the
same channel. To achieve this objective, many iterative power control al-
gorithms have been developed (Bambos, Chen and Pottie (1995), Ulukus
and Yates (1996) and the references therein).
In this paper we look at the problem from a di�erent perspective. We
assume that nodes in the network cooperate in routing each others' data
packets. Examples of such networks are mobile ad hoc networks (Gupta and
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Kumar (1996) and Johnson and Maltz (1996)). They are networks formed
by a group of mobile nodes which communicate with each other over a
wireless channel and without any centralized control. In such networks, a
critical requirement is that each node in the network has a path to every
other node in the network, i.e., the network is connected. With this in mind,
we consider the problem of determining the critical power at which each
node needs to transmit so as to guarantee asymptotic connectivity of the
network.
More precisely, we consider the following problem: Let D be a disc in <2

having unit area. Let G(n; r(n)) be the network (graph) formed when n
nodes are placed uniformly and independently in D, and two nodes i and
j can communicate with each other if the distance between them is less
than r(n). That is, if xk is the location of node k, nodes i and j can
communicate if kxi � xjk � r(n), where the norm used is the Euclidean
norm (i.e., L2-norm). The radius r(n) is usually referred to as the range of a
node in G(n; r(n)). Then the problem is to determine r(n) which guarantees
that G(n; r(n)) is asymptotically connected with probability one, i.e., the
probability that G(n; r(n)) is connected, denoted by PC(n; r(n)), goes to

one as n!1. For this problem, we show that if �r2(n) = logn+c(n)
n

, then
PC(n; r(n))! 1 if and only if c(n)! +1.
A related problem that has been considered in the literature is connectivity
in Bernoulli graphs: Let B(n; p(n)) be a graph consisting of n nodes, in
which edges are chosen independently and with probability p(n). Then, it

has been shown that if p(n) = logn+c(n)
n

, the probability that B(n; p(n)) is
connected goes to one if and only if c(n)! +1 (Theorem VII.3 in Bollob�as
(1985)). Even though the asymptotic expression is the same, connectivity in
G(n; r(n)) is quite di�erent from connectivity in B(n; p(n)). The event that
there are links between i and j, and between j and k, is not independent
of the event that there is a link between i and k (as, �xing xi, the former
is true given the latter only if j lies in the intersection of two discs of
radius r(n) and centered at i and k, with kxi� xkk � r(n). This has lower
probability than the probability (�r2(n))2 of the event that there are links
between i and j, and j and k ). As it turns out, an entirely di�erent proof
technique was needed to prove asymptotic connectivity in G(n; r(n)).
Another closely related problem considered in the literature is the coverage
problem: Disks of radius a are placed in a unit-area disc D 2 <2 at a
Poisson intensity of �, i.e., number of discs having their centers in a set
A � D of area jAj is Poisson distributed with mean �jAj. Let V(�; a)
denote the vacancy within D, i.e., V(�; a) is the region of D not covered by
the disks. Then it has been shown in Hall (1988) (Theorem 3.11) that

1

20
min

n
1; (1 + �a2�2)e��a

2�
o

< P (jV(�; a)j > 0)

< min
n
1; 3(1 + �a2�2)e��a

2
�
o
: (1.1)
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Note that (1.1) has more stringent asymptotics on a(n) than our result. If

� = n and �a2(n) = logn+log logn+c(n)
n

, then limn!1 P (jV(n; a(n))j > 0) =
0 for c(n)! +1, and limn!1 P (jV(n; a(n))j > 0) � 1=20 for c(n)!�1.
Also, note that coverage of D by discs of radius a(n) = r(n) does not
guarantee connectivity in G(n; r(n)) (recall r(n) is the range of nodes in
G(n; r(n)))). However, a(n) = r(n)=2 does; the corresponding lower bound

on r(n) is �r2(n) = 4 logn+log logn+c(n)
n

for c(n) ! +1, which is much
weaker than the one we obtain. Moreover, since G(n; r(n)) can be con-
nected without D being entirely covered by n discs of radius r(n), this
approach does not lead to any necessary conditions on r(n) for asymptotic
connectivity in G(n; r(n)).
Yet another related problem considered is in continuum percolation theory
(Kesten (1982), Mesteer and Roy (1996)): Nodes are assumed to be dis-
tributed with Poisson intensity � in <2, and two nodes are connected to
each other if the distance between them is less than r. Then the problem
considered is to �nd a critical value of r such that the origin is connected
to an in�nite-order component. Of course for this to make sense, the node
distribution process is conditioned on the origin having a node. We will, in
fact, make use of some results from percolation theory while deriving the
su�cient condition on r(n) for asymptotic connectivity in G(n; r(n)) (cf.
Section 3).
The rest of the paper is organized as follows. In Section 2 we derive the
necessary condition on r(n) for asymptotic connectivity of G(n; r(n)). The
su�ciency of this condition is proved in Section 3. We conclude in Section
4 with some comments on extensions of the problem considered.

2 Necessary Condition on r(n) for Connectivity

In this section we derive necessary conditions on the radio range of a node in
the network for asymptotic connectivity. In the following, to avoid techni-
calities which obscure the main ideas, we will neglect edge e�ects resulting
due to a node being close to the boundary of D. The complete proofs which
take the edge e�ects into account are given in the Appendix.
We will frequently use the following bounds.

Lemma 2.1 (i) For any p 2 [0; 1]

(1� p) � e�p: (1.2)

(ii) For any given � � 1, there exists p0 2 [0; 1], such that

e��p � (1� p); for all 0 � p � p0: (1.3)

If � > 1, then p0 > 0.
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Lemma 2.2 If �r2(n) = logn+c
n

, then, for any �xed � < 1 and for all
su�ciently large n

n(1� �r2(n))n�1 � �e�c: (1.4)

Proof: Taking the logarithm of the left hand side of (1.4), we get

log(L.H.S. of (1.4)) = logn+ (n� 1) log
�
1� �r2(n)

�
:

Using the power series expansion for log(1� x),

log(L.H.S. of (1.4)) = logn� (n� 1)
1X
i=1

�
�r2(n)

�i
i

= logn� (n� 1)

 
2X

i=1

(logn+ c)i

ini
+ E(n)

!
;(1.5)

where

E(n) =
1X
i=3

(logn+ c)i

ini

� 1

3

1Z
2

�
logn+ c

n

�x

dx

=
1

3 log
�
logn+c

n

� � logn+ c

n

�x

������
1

2

� 1

3

�
logn+ c

n

�2

; (1.6)

for all large n. Substituting (1.6) in (1.5), we get

log(L.H.S. of (1.4)) � logn � (n� 1)

�
logn+ c

n
+

5(logn+ c)2

6n2

�

� �c� (logn+ c)2 � (logn + c)

n
� �c� �;

for all su�ciently large n. The result follows by taking the exponent of both
sides and using � = e��. 2

Now, let P (k)(n; r(n)); k = 1; 2; : : : denote the probability that a graph
G(n; r(n)) has at least one order-k component. By an order-k component
we mean a set of k nodes which form a connected set, but which are not
connected with any other node. Also, let Pd(n; r(n)) denote the probability
that G(n; r(n)) is disconnected.
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Theorem 2.1 If �r2(n) = logn+c(n)
n

, then

lim inf
n!1

Pd(n; r(n)) � e�c
�
1� e�c

�
; (1.7)

where c = limn!1 c(n).

Proof: We �rst study the case where �r2(n) = logn+c
n

for a �xed c. Con-

sider P (1)(n; r(n)), the probability that G(n; r(n)) has at least one order-1
component. That is, P (1)(n; r(n)) is the probability that G(n; r(n)) has at
least one node which does not include any other node in its range. Then

P (1)(n; r(n)) �
nX
i=1

P (fi is the only isolated node in G(n; r(n))g)

�
nX
i=1

�
P (fi is an isolated node in G(n; r(n))g)

�
X
j 6=i

P (fi and j are isolated nodes in G(n; r(n))g)
�

�
nX
i=1

P (fi is isolated in G(n; r(n))g)

�
nX
i=1

X
j 6=i

P (fi and j are isolated in G(n; r(n))g): (1.8)

Neglecting edge e�ects, we get

P (fi is isolated in G(n; r(n))g) � (1� �r2(n))n�1;

P (fi and j isolated in G(n; r(n))g) � (4�r2(n) � �r2(n))(1� 5

4
�r2(n))n�2

+ (1� 4�r2(n))(1 � 2�r2(n))n�2: (1.9)

The �rst term on the RHS above takes into account the case where j is at
a distance between r(n) and 2r(n) from i. Substituting (1.9) in (1.8), we
get

P (1)(n; r(n)) � n(1� �r2(n))n�1 � n(n� 1)
�
3�r2(n)(1� 5

4
�r2(n))n�2

+ (1� 2�r2(n))n�2
�
:

Using Lemmas 2.1 and 2.2, we get that for �r2(n) = logn+c
n

, and for any
�xed � < 1 and � > 0,

P (1)(n; r(n)) � �e�c � n(n� 1)
�
3�r2(n)e�

5
4 (n�2)�r2(n) + e�2(n�2)�r

2(n)
�

� �e�c � (1 + �)e�2c;
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for all n > N (�; �; c). Since P (1)(n; r(n)) � Pd(n; r(n)), we have

Pd(n; r(n)) � �e�c � (1 + �)e�2c; (1.10)

for all n > N (�; �; c). Now, consider the case where c is a function c(n) with
limn!1 c(n) = �c. Then, for any � > 0, c(n) � �c+ � for all n � N 0(�). Also,
the probability of disconnectedness is monotone decreasing in c. Hence

Pd(n; r(n)) � �e�(�c+�) � (1 + �)e�2(�c+�):

for n � maxfN (�; �; �c+ �); N 0(�)g. Taking limits

lim inf
n!1

Pd(n; r(n)) � �e�(�c+�) � (1 + �)e�2(�c+�):

Since this holds for all � > 0 and � < 1, the result follows. 2

Corollary 2.1 Graph G(n; r(n)) is asymptotically disconnected with posi-

tive probability if �r2(n) = logn+c(n)
n

and lim sup
n

c(n) < +1.

3 Su�cient Condition on r(n) for Connectivity

In order to derive a lower bound on r(n) so as to ensure asymptotic con-
nectivity in G(n; r(n)), we make use of some results from continuum per-
colation (Meester and Roy (1996)). In percolation theory, nodes are as-
sumed to be distributed with Poisson intensity � in <2 (results are in
fact available for more general cases, see Meester and Roy (1996)). As in
G(n; r(n)), two nodes are connected to each other if the distance between

them is less than r(�). Let GPoisson(�; r(�)) denote the resultant (in�nite)
graph. Also, let qk(�; r(�)) be the probability that the node at the ori-
gin is a part of an order-k component. Of course for this to make sense,
the node distribution process is conditioned on the origin having a node.
Then, (1�P1

k=1 qk(�; r(�))) =: q1(�; r(�)) gives the probability that the
origin is connected to an in�nite-order component. It can be shown that
almost surely GPoisson(�; r(�)) has at most one in�nite-order component
for each � � 0 (Theorem 6.3 of Meester and Roy (1996)). Furthermore, the
following is true (Propositions 6.4-6.6 of Meester and Roy (1996))

lim
�!1

1

q1(�; r(�))

1X
k=1

qk(�; r(�)) = 1: (1.11)

Hence, as �!1, almost surely the origin in GPoisson(�; r(�)) lies in either
an in�nite-order component or an order-1 component (i.e., it is isolated).
Now, our original problem concerning a �xed number of nodes n in the unit-
area disc D can be approximated by regarding that process as the restric-
tion to D of the Poisson process on <2 with � = n. Let the graph obtained
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by restricting GPoisson(n; r(n)) toD be denoted by GPoissonD (n; r(n)). Then,

by the above observation, the probability that GPoissonD (n; r(n)) is discon-

nected, denoted by PPoisson
d (n; r(n)), is asymptotically the same as the

probability that it has at least one isolated node, denoted by PPoisson;(1)

(n; r(n)). Although GPoissonD (n; r(n)) has a Poisson(n) number of nodes in

D, the di�erence between GPoissonD (n; r(n)) and G(n; r(n)) is negligible for
large n. This is made precise below.

Lemma 3.1 If �r2(n) = logn+c(n)
n

, then

lim sup
n!1

PPoisson;(1)(n; r(n)) � e�c; (1.12)

where c = limn!1 c(n).

Proof: Note that since e�nn
j

j! is the probability that GPoissonD (n; r(n)) has
j nodes, and de�ning a graph with 0 nodes to be connected, we have

PPoisson;(1)(n; r(n)) =
1X
j=1

P (1)(j; r(n))e�n
nj

j!
: (1.13)

Let E1(j; r(n)) denote the expected number of order-1 components in G(j;
r(n)). Then

P (1)(j; r(n)) � E1(j; r(n))

= E[

jX
i=1

I(i is isolated in G(j; r(n)))]

= jP (fj is isolated in G(j; r(n))g)
� j(1� �r2(n))j�1: (1.14)

Substituting (1.14) in (1.13), we get

PPoisson;(1)(n; r(n)) �
1X
j=1

j(1 � �r2(n))j�1e�n
nj

j!

= n

1X
j=0

(1� �r2(n))je�n
nj

j!

= ne�n�r
2(n); (1.15)

from which the result follows. 2

The following must be a known fact though we are not aware of any refer-
ence for it.
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Lemma 3.2 For all � > 0 and su�ciently large n

nX
j=1

e�n
nj

j!
� (

1

2
� �): (1.16)

We are now ready to give a su�cient condition on r(n) for asymptotic
connectivity in G(n; r(n)).
Theorem 3.1 If �r2(n) = logn+c(n)

n
and limn!1 c(n) = c, then

lim sup
n!1

Pd(n; r(n)) � 4e�c: (1.17)

Proof: By (1.11) and the observation made thereafter, we get that, for any
� > 0 and for all su�ciently large n,

PPoisson
d (n; r(n)) � (1 + �)PPoisson;(1)(n; r(n)): (1.18)

Note that

PPoisson
d (n; r(n)) =

1X
j=1

Pd(j; r(n))e
�nn

j

j!
: (1.19)

For a �xed range r = r(n), we have

Pd(k; r) � P (fnode k is isolated in G(k; r)g) + Pd(k � 1; r):

which after recursion gives, that for 0 < j < n,

Pd(n; r(n)) �
nX

k=j+1

P (fnode k is isolated in G(k; r(n))g) + Pd(j; r(n))

�
nX

k=j+1

(1 � �r2(n))k�1 + Pd(j; r(n))

� (1� �r2(n))j

�r2(n)
+ Pd(j; r(n)): (1.20)

Substituting (1.20) in (1.19), we get

PPoisson
d (n; r(n)) � Pd(n; r(n))

nX
j=1

e�n
nj

j!
�

n�1X
j=1

(1� �r2(n))j�1

�r2(n)
e�n

nj

j!

� Pd(n; r(n))(
1

2
� �)� e�n�r

2(n)

�r2(n)
; (1.21)

where we have used Lemma 3.2. Using (1.18), we get

Pd(n; r(n)) � 2(1 + 4�)

"
PPoisson;(1)(n; r(n)) +

e�n�r
2(n)

�r2(n)

#
: (1.22)
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For the given �r2(n) = logn+c(n)
n

, from Lemma 3.1, we get that, for any
�xed � > 0, the following holds for all su�ciently large n

Pd(n; r(n)) � 2(1 + 4�)

�
e�c(n) +

e�c(n)

logn+ c(n)

�
:

Thus, since � > 0 is arbitrary,

lim sup
n!1

Pd(n; r(n)) � 2e�c: (1.23)

2

The following is an obvious consequence of Theorem 3.1.

Corollary 3.1 Graph G(n; r(n)) is asymptotically connected with proba-

bility one for �r2(n) = logn+c(n)
n

if c(n)! +1.

Combining Corollaries 2.1 and 3.1, we get the main result of the paper.

Theorem 3.2 Graph G(n; r(n)), with �r2(n) = logn+c(n)
n

is connected
with probability one as n!1 if and only if c(n)! +1.

4 Concluding Remarks

We have derived the critical range of nodes placed randomly in a disc of
unit area, for the resulting network to be connected with probability one as
the number of nodes tends to in�nity (cf. Theorem 3.2). One can consider
the following extensions of the problem discussed in this paper:

� Our lower and upper bounds on Pd(n; r(n)) are not tight. A more
re�ned argument may lead to bounds which hold for all n. In par-

ticular, we believe that for �r2(n) = logn+c(n)
n

, Pd(n; r(n)) ! 1 if
c(n)!�1.

� Consider the following generalization of the problem: Even if a node
has another node in its range, it can communicate with that node with
probability p(n); 0 � p(n) � 1. The quantity p(n) can be regarded
as the reliability of a link, and is tantamount to Bernoulli deletion of
edges in G(n; r(n)). Our conjecture is that Theorem 3.2 is true with
�r2(n) replaced by �r2(n)p(n). This conjecture holds for at least
two special cases: �r2(n) � 4 (i.e., range of each node includes D)
and p(n) arbitrary in [0; 1] (Theorem VII.3 in Bollob�as (1985)), and
r(n) arbitrary and p(n) � 1 (cf. Theorem 3.2). As in the proof of
Theorem 3.1, continuum percolation theory results can be used to
obtain su�cient conditions on �r2(n)p(n). Clearly, Theorem 2.1 still
holds. However, stronger necessary conditions need to be worked out.
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� A much harder problem to analyze is when nodes are not placed
independently in the disc D. For example, nodes may be placed in
clusters, with a speci�ed probability distribution on the size of a
cluster.
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π
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FIGURE 1. Two cases for evaluating P (fn is isolated in G(n; r(n)g).

1 Appendix

Here we give the complete proofs of the theorems given in the main body
of the paper, taking the edge e�ects into account.

Proof of Theorem 2.1:

As before, we �rst study the case where �r2(n) = logn+c
n

for a �xed c. Con-

sider P (1)(n; r(n)), the probability that G(n; r(n)) has at least one order-1
component. Then, as argued in (1.8), we have

P (1)(n; r(n)) �
nX
i=1

P (fi is isolated in G(n; r(n))g)

�
nX
i=1

X
j 6=i

P (fi and j are isolated in G(n; r(n))g): (.24)

Now, let us consider each sum in (.24) separately. For this purpose, de�ne
the notation

N (1)(G) := fi 2 G : i is an isolated node in Gg;
Do := fx 2 D : kxk � 1p

�
� r(n)g;

@D := D �Do: (.25)

Then, as illustrated in Figure 1, we need to consider two cases to evaluate
the probability that node n is isolated, namely: When xn 2 Do (recall that
xn is the position of node n in D), and when xn 2 @D. To obtain a lower
bound, we consider only the �rst case, i.e.,

nX
i=1

P (fi is isolated in G(n; r(n))g) = nP (fn is isolated in G(n; r(n)g)
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� nP (fxn 2 Do, n 2 N (1)(G(n; r(n)))g)
= n�(

1p
�
� r(n))2(1� �r2(n))n�1:

Using Lemma 2.2, we see that for any � < 1, when n is su�ciently large,

nX
i=1

P (fi is isolated in G(n; r(n)g) � �e�c: (.26)

Next, consider the second sum in (.24), which in the notation of (.25) can
be written as

nX
i=1

X
j 6=i

P (fi; j 2 N (1)(G(n; r(n)))g)

=
nX
i=1

X
j 6=i

�
P (fi; j 2 N (1)(G(n; r(n))); and xi or xj 2 @Dg)

+ P (fi; j 2 N (1)(G(n; r(n))); and xi; xj 2 Dog)
�

� n(n� 1)
�
2P (fn; n� 1 2 N (1)(G(n; r(n))); and xn 2 @Dg)

+ P (fn; n� 1 2 N (1)(G(n; r(n))), and xn; xn�1 2 Dog)
�
: (.27)

The �rst term can be written as

2n(n� 1)P (fn; n� 1 2 N (1)(G(n; r(n))); and xn 2 @Dg)
= 2n(n� 1) �P (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg) �

P (fn� 1 2 N (1)(G(n; r(n)))
���n 2 N (1)(G(n; r(n))); xn 2 @Dg): (.28)

Now nP (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg) can be evaluated using Fig-
ure 2, to give

nP (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg) � n

r(n)Z
0

�
1�

�
� � cos�1

y

r(n)

�
r2(n) + E(y)

�n�1
2�(

1p
�
� y)dy; (.29)

where

E(y) � 2r(n) �
 

1p
�
�
r

1

�
� r2(n)

!

� 2r(n) �
�

1p
�
� 1p

�

�
1� �r2(n)

��
= 2

p
�r3(n): (.30)
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π
1

θ
y

r(n)

(i) (ii)

FIGURE 2. Evaluating nP (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg): (i) Shaded
area gives a lower bound on the area which nodes 1; 2; : : : ; n � 1 should not
lie in for node n to be isolated, when n is at a distance of y from the boundary
of D, and (ii) Area within the rectangle is an upper bound on the error E(y) due
to approximation of the portion of the disc D within the range of node n by its
tangent.

Substituting (.30) in (.29), and changing the variable to � = cos�1 y

r(n) ,
we get

nP (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg)

� n

�
2Z

0

�
1� (� � �)r2(n) + 2

p
�r3(n)

�n�1
2
p
�r(n) sin �d�

� n � 2p�r(n)
�
2Z

0

e�(n�1)((���)r
2(n)�2p�r3(n)) e

j� � e�j�

2j
d�

= 2
p
�nr(n)e�(n�1)(�r

2(n)�2p�r3(n)) �
e(n�1)

�
2 r

2(n)(n � 1)r2(n) + 1

((n � 1)r2(n))2 + 1
: (.31)

For the given �r2(n) = logn+c
n

, we thus have

nP (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg)

� 4�ne�(n�1)(
�
2 r

2(n)�2p�r3(n))

(n � 1)
p
�r(n)

� 4(1 + �)�e�
c
2p

logn
; (.32)
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y

n-1 n

y

h

nn-1

r(n)

(a) (b)

FIGURE 3. Evaluating P (fn; (n� 1) 2 N (1)(G(n; r(n))), and xn; xn�1 2 D
og).

Note that h2 = r2(n)�
�
y

2

�2
.

for any � > 0 and su�ciently large n. The remaining factor in (.28) can be
evaluated as

2(n� 1)P (fn� 1 2 N (1)(G(n; r(n)))
���n 2 N (1)(G(n; r(n))); xn 2 @Dg)

= 2(n� 1)

�
P (fn� 1 2 N (1)(G(n; r(n))); xn�1 2 @D

���
n 2 N (1)(G(n; r(n))); xn 2 @Dg) + P (fn� 1 2 N (1)(G(n; r(n)));
xn�1 2 Do

���n 2 N (1)(G(n; r(n))); xn 2 @Dg)
�

� 2(n� 1)

�
2
p
�r(n)(1� �r2(n) + 2E(0))n�2

+ (1� 3

2
�r2(n) + E(0))n�2

�
; (.33)

where E(�) is de�ned in (.30). For the given �r2(n) = logn+c
n

, we thus have

2(n� 1)P (fn� 1 2 N (1)(G(n; r(n)))
���n 2 N (1)(G(n; r(n))); xn 2 @Dg)

� 4(1 + �)

r
logn

n
; (.34)

for any � > 0 and all su�ciently large n. Substituting (.32) and (.34) in
(.28), we get

2n(n� 1)P (fn; n� 1 2 N (1)(G(n; r(n))); and xn 2 @Dg)

� 4(1 + �)�e�
c
2p

logn
� 4(1 + �)

r
logn

n
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� 16(1 + �0)�e�
c
2p

n
; (.35)

for any �0 > 0 and all su�ciently large n. The second term in (.27) is (as
illustrated in Figure 3),

n(n� 1)P (fn; (n� 1) 2 N (1)(G(n; r(n))), and xn; xn�1 2 Dog)
� n(n� 1)P (fxn 2 Dog) �

h
P (fr(n) < jxn � xn�1j � 2r(n); jxi � xj j

> r(n); 1 � i � n� 2; j = n; n� 1g
���xn 2 Do) + P (f2r(n) < jxn

�xn�1j; jxi� xjj > r(n); 1 � i � n� 2; j = n; n� 1g
���xn 2 Do)

i
� n(n� 1)�(

1p
�
� r(n))2 �2

64
2r(n)Z
r(n)

�
1� 2�r2(n) + �

�
r2(n)� y2

4

��n�2
2�ydy+

+
�
1� �r2(n)

� �
1� 2�r2(n)

�n�2i

� n(n� 1)

2
64

2r(n)Z
r(n)

e�(n�2)�(r
2(n)+ y2

4 )2�ydy + (1� 2�r2(n))n�2

3
75

� n(n� 1)

�
e�(n�2)�r

2(n) 4

n� 2
e�

(n�2)�y2

4

���r(n)
2r(n)

+ e�(n�2)2�r
2(n)

�

� n(n� 1)

�
4

n� 2
e�(n�2)

5
4�r

2(n) + e�(n�2)2�r
2(n)

�

� n(n� 1)(1 + �00)e�(n�2)2�r
2(n)

� (1 + �0)e�2c; (.36)

for any �0 > 0, the given �r2(n) = logn+c
n

and all su�ciently large n.
Substituting (.35) and (.36) in (.27), we get

nX
i=1

nX
j 6=i

P (fi and j are isolated in G(n; r(n))g)

� 16�(1 + �00)p
n

e�
c
2 + (1 + �0)e�2c

� (1 + �)e�2c: (.37)

for any � > 0 and all su�ciently large n. Substituting (.26) and (.37) in
(.24), we get

P (1)(n; r(n)) � �e�c � (1 + �)e�2c;
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for all n > N (�; �; c). Since P (1)(n; r(n)) � Pd(n; r(n)), we have

Pd(n; r(n)) � �e�c � (1 + �)e�2c; (.38)

for all n > N (�; �; c). Now, consider the case where c is a function c(n) with
limn!1 c(n) = �c. Then, for any � > 0, c(n) � �c+ � for all n � N 0(�). Also,
the probability of disconnectedness is monotone decreasing in c. Hence

Pd(n; r(n)) � �e�(�c+�) � (1 + �)e�2(�c+�):

for n � maxfN (�; �; �c+ �); N 0(�)g. Taking limits

lim inf
n!1

Pd(n; r(n)) � �e�(�c+�) � (1 + �)e�2(�c+�):

Since this holds for all � > 0 and � < 1, the result follows. 2

Proof of Lemma 3.1:

As before,

PPoisson;(1)(n; r(n)) =
1X
j=1

P (1)(j; r(n))e�n
nj

j!
: (.39)

LetE1(j; r(n)) denote the expected number of order-1 components in G(j; r(n)).
Then

P (1)(j; r(n)) � E1(j; r(n))

= E[

jX
i=1

I(i is isolated in G(j; r(n)))]

= jP (fj is isolated in G(j; r(n))g): (.40)

Using the de�nitions of N (1)(G);Do and @D given in (.25), we can write

P (fj is isolated in G(j; r(n))g)
= P (fj 2 N (1)(G(j; r(n))) and xj 2 Dog)

+ P (fj 2 N (1)(G(j; r(n))) and xj 2 @Dg): (.41)

>From (.31) and (.41) , we get

P (1)(j; r(n)) � jP (fj is isolated in G(j; r(n))g)

� j�

�
1p
�
� r(n)

�2 �
1� �r2(n)

�j�1
+ 2

p
�jr(n) �

e�(j�1)f1(r(n))
e(j�1)f2(r(n))(j � 1)r2(n) + 1

((j � 1)r2(n))2 + 1
; (.42)
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where f1(r) = �r2 � 2
p
�r3, and f2(r) = �r2=2. From (.39) and (.42), we

get

PPoisson;(1)(n; r(n)) �
1X
j=1

jP (fj is isolated in G(j; r(n))g)e�nn
j

j!
(.43)

�
1X
j=1

j(1 � �r2(n))j�1e�n
nj

j!
+ 2

p
�r(n)e�n

n

1!

+ 2
p
�r(n)

1X
j=2

j

"
e�(j�1)(f1(r(n))�f2(r(n)))

(j � 1)r2(n)
+

e�(j�1)f1(r(n))

((j � 1)r2(n))
2

#
e�n

nj

j!

� n

1X
j=0

(1� �r2(n))je�n
nj

j!
+ 2

p
�r(n)ne�n

+
2
p
�

r(n)

1X
j=2

j

j � 1

e�(j�1)(f1(r(n))�f2(r(n)))nj

j!
e�n

+
2
p
�

r3(n)

1X
j=2

j

j � 1

j + 1

j � 1

e�(j�1)f1(r(n))nj

(j + 1)!
e�n

� ne�n�r
2(n) + 2

p
�r(n)ne�n +

2
p
�

r(n)
2ef1(r(n))�f2(r(n)) �

�ene�(f1(r(n))�f2 (r(n)))

e�n +
2
p
�

r3(n)

2 � 3e2f1(r(n))
n

ene
�f1(r(n))

e�n

� ne�n�r
2(n) + 2

p
�r(n)ne�n +

4
p
�

r(n)
e�(n�1)(f1(r(n))�f2(r(n))) �

�en(f1(r(n))�f2 (r(n)))
2

2 +
12
p
�

nr3(n)
e�(n�2)f1(r(n))e

nf21 (r(n))

2 ; (.44)

where we have used e�x � 1 � x + x2

2 . For the given �r2(n) = logn+c(n)
n

,
we thus have

PPoisson;(1)(n; r(n)) � e�c(n) + 2
p
n(logn+ c(n))e�n +

4�(1 + �)e�c(n)p
logn+ c(n)

+
12�2(1 + �)p
n(logn+ c(n))3

e�c(n); (.45)

for any � > 0 and all su�ciently large n. The result follows. 2

Proof of Lemma 3.2:

By Chebyshev's inequality, we have that for any �

1X
j=n+n�+1

e�n
nj

j!
� n

n2�
:
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Let � = 1
2
+ � for some � > 0, then

1X
j=n+n�+1

e�n
nj

j!
� 1

n2�
: (.46)

Also,

n+n�X
j=n+1

e�n
nj

j!
=

n�X
j=1

e�n
nn+j

(n+ j)!

=
n�X
j=1

e�n
nn�j�1

(n� j � 1)!
� 1

jQ
i=0

�
1� � i

n

�2�

�
0
@ n�X

j=1

e�n
nn�j�1

(n� j � 1)!

1
A �

max
1�j�n�

1
jQ

i=0

�
1� � i

n

�2� : (.47)

Now,

max
1�j�n�

1
jQ

i=0

�
1� � i

n

�2� � max
1�j�n�

1

1�
jP

i=1

�
i
n

�2
=

1

1�
n�P
i=1

�
i
n

�2
=

1

1� n�(n�+1)(2n�+1)
6n2

� 1

1� (1+�0)n3�� 1
2

3

; (.48)

for the chosen � = 1
2+�, any �0 > 0 and all su�ciently large n. Substituting

(.48) in (.47), we get

n+n�X
j=n+1

e�n
nj

j!
�

0
@ n�X

j=1

e�n
nn�j�1

(n� j � 1)!

1
A �

 
1 +

2(1 + �0)n3��
1
2

3

!

�
0
@ nX

j=1

e�n
nj

j!

1
A �

 
1 +

2(1 + �0)n3��
1
2

3

!
: (.49)
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>From (.46), (.49) and the fact that
1P
j=0

e�nnj=j! = 1, we get that

nX
j=1

e�n
nj

j!
� 1� e�n � 1

n2�

1 + 1 + 2(1+�0)n3��1
2

3

� 1

2
� �00;

for any � < 1
6 , �

00 > 0 and all su�ciently large n. 2

Proof of Theorem 3.1:

By (1.11) and the observation made thereafter, we get that, for any � > 0
and for all su�ciently large n,

PPoisson
d (n; r(n)) � (1 + �)PPoisson;(1)(n; r(n)): (.50)

Note that

PPoisson
d (n; r(n)) =

1X
j=1

Pd(j; r(n))e
�nn

j

j!
: (.51)

For a �xed range r = r(n), we have

Pd(k; r) � P (fnode k is isolated in G(k; r)g) + Pd(k � 1; r):

which after recursion gives, that for 0 � j < n

Pd(n; r(n)) �
nX

k=j+1

P (fnode k is isolated in G(k; r(n))g)

+ Pd(j; r(n)): (.52)

Substituting (.52) in (.51), we get

PPoisson
d (n; r(n))

� Pd(n; r(n))
nX

j=1

e�n
nj

j!

�
n�1X
j=1

nX
k=j+1

P (fk is isolated in G(k; r(n))g)e�nn
j

j!

� Pd(n; r(n))(
1

2
� �)�

nX
k=2

P (fk is isolated in G(k; r(n))g)
k�1X
j=1

e�n
nj

j!

� Pd(n; r(n))(
1

2
� �)�

nX
k=2

P (fk is isolated in G(k; r(n))g)ke�nn
k

k!
;
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where we have used Lemma 3.2 and the fact that e�n nk

k! increases with k,
for 1 � k � n. Using (.50), we get

Pd(n; r(n)) � 2(1 + 6�)

�
PPoisson;(1)(n; r(n))

+
1X
k=1

kP (fk is isolated in G(k; r(n))g)e�nn
k

k!

�
:

For the given �r2(n) = logn+c(n)
n

, and from Lemma 3.1, and (.43) we get
that for any � > 0,

Pd(n; r(n)) � 2(1 + 6�)2 � (1 + �0)e�c(n):

holds for all su�ciently large n. Thus,

lim sup
n!1

Pd(n; r(n)) � 4(1 + �00)e�c:

Since �00 can be made arbitrarily small, the result follows. 2
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