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Connectivity of WANETs (1)

There are three fundamental properties of Wireless Ad Hoc Networks (WANETS) which
are extensively used in the literature to characterize the performance of the WANET: Con-
nectivity, Capacity and Coverage (C3 Problems). We will first discuss connectivity problem
because it provides the necessary foundation for the discussion on capacity and coverage
problems. There are many kinds of capacity or coverage concepts proposed in the literature,
all of them are based on some assumptions on connectivity. At the first sight, connectivity
is simpler than coverage and capacity problems. However, to fully understand connectiv-
ity problems need some highly technical mathematics like percolation theory in statistical
physics or Chen-Stein method in advanced probability theory. In fact, the most difficult
part of proving theorems in C3 is more or less related to the connectivity, and the techniques
developed here can be reused in our research, especially in the theoretical analysis part. In
EPFL, there is even a one semester course for this topic [Grossglauser06], covered the mate-
rials from the discrete percolation theory to random geometric graph and their applications
to WANETs. In our course, we will use 2-3 classes to cover the following topics:

• Connectivity for arbitrary finite networks;

• Connectivity for homogeneous random geographic graphs;

• Graph evolution for homogeneous random geographic graphs;

• Connectivity for general random geographic graphs;

• k-connectivity problems;

• Connectivity based on more realistic assumptions for radio propagation;

• Connectivity with Bernoulli nodes;

Pan will also help me to present our own work on connectivity of WANETs with direction
antenna. The most important part is the second part: connectivity for homogeneous random
geographic graphs. it is the most extensively studied subtopic, and the results in this subtopic
give the theoretical foundation for other subtopics. I will go through this part slowly, and
discuss one of Gupta and Kumar’s classical paper [Gupta98], the second-most-cited paper
of P. R. Kumar, with the greatest patience.

The symbol R stands for the set of real numbers. Z is the set of integers, N the set
of integers strictly greater than 0. The symbol P stands for probability of, and E is the
corresponding expectation. A graph G is determined entirely by its set of vertices, V , and
edges, E ⊆ V × V . We say that an edge e ≡ (u, v) is present in graph G, or e ∈ G if and
only if e ∈ E. Check our handout for related concepts in graph theory.
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1 Problem 1: CTR for Arbitrary Network

1.1 Critical Transmission Range (CTR)

The simplest form of connectivity problem in the literature is the characterization of
the so called critical transmission range (CTR). All the network nodes are assumed to have
the same transmitting range rc, and the problem is to identify the minimum value of rc (the
critical transmitting range) such that the resulting communication graph is connected. We
recall that an undirected graph G is connected if and only if there exists at least one path
connecting any two nodes in the graph.

The interest in finding the minimum value of rc that guarantees certain properties is
motivated by energy consumption and network capacity concerns. A low transmission range
reduces the energy consumption and increase spatial reuse but if it becomes too low then
the network can become disconnected.

The assumption that all the nodes use the same transmitting range reflects all those
situations in which transceivers use the same technology and no transmit power control.
This is the case, for instance, for most of the 802.11 wireless cards currently on the market.
In this scenario, using the same transmitting range for all the nodes is a reasonable choice,
and the only way to reduce energy consumption and increase capacity is to reduce rc as
much as possible (we will explain this point in detail when we discuss Gupta and Kumar’s
capacity paper [Gupta00]).

1.2 CTR for Arbitrary Network

Arbitrary network here means that we do not make any assumption on the distribution
of network nodes.

We denote the set of network nodes to be X = {x1, . . . , xi, . . . , xn} where xi represents
the position of node i and n is the total number of nodes (or network size). Obviously, the
CTR of X, i.e. r∗c , is the function of X, and can be denoted as r∗c (X).

We first give the upper-bound and lower-bound of the CTR for a given arbitrary network.

Theorem 1 (upper-bound and lower-bound of CTR) (1) r∗c (X) ≤ maxxi,xj∈X ‖xi−
xj‖; (2) r∗c (X) ≥ minxi,xj∈X∧i6=j ‖xi − xj‖.

From the upper-bound of CTR, we know that r∗c (X) ≤ √
2 · l when all network nodes

are in a square region of side length l and r∗c (X) ≤ D when all network nodes are in a disk
region of diameter length D. For arbitrary networks, it is a tight bound since nodes could
be concentrated at the opposite corners of the square or the opposite ends of any diameter
of the disk. To get this upper-bound is trivial, however, it is the foundation of applying
Percolation Theory or Occupancy Theory to the analysis of connectivity and capacity of
WANETs (See Figure 1 for an example).

The lower-bound of CTR reflects a simple and useful relation between the connectivity
of a graph G, a global property, and the degree deg(u) of an arbitrary node u ∈ V , a
local property. The implication {G is connected} ⇒ {minu∈V deg(u) ≥ 1} is always true.
The opposite implication is not always true, however, because a network can consists of
separate, disconnected clusters containing nodes each with minimum degree larger than 1
(See Figure 2 for an illustration). Connectivity property is a global property which cannot
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Figure 1: Construction of the percolation model. We divide the plane in squares of size
d × d. By setting the relation between rc and d, we can make sure that any pair of nodes
located in two “neighbor” squares are connected.

(a) (b)
isolated

Figure 2: Illustration of the difference between isolated node and disconnectedness.
(a){There exists isolated node} ⇒{The network is disconnected}; (b){the network is dis-
connected};{There exists isolated node}.

be guaranteed in a distributed or localized way, however, whether a node is an isolated one
only reflects the local property of each node. Many sophisticated techniques are based on
this relation, and we will see it many times in the following.

The following theorem shows that the CTR for arbitrary network equals the length of
the longest edge of the Euclidean Minimum Spanning Tree (EMST) built on the network
nodes. We recall that the EMST is a connected graph that contains all the nodes and
minimizes the sum of the Euclidean distances of edges (or links).

Theorem 2 (relationship between EMST and CTR) The CTR for connectivity, i.e.
r∗c , is equal to the length of the longest edge of the EMST built on the nodes. 1

Proof: Consider an arbitrary set of nodes and assume that their EMST is known.
Assume first that r∗c is shorter than the EMST’s longest link. By the definition of the

EMST, its longest link (as well as every other link) is the shortest possible way to connect
the two subsets of nodes separated by the link. (Otherwise the link sum of the tree could
be made even smaller by changing the link to a shorter one.) The assumption made thus
implies that r∗c is too short to connect the two subsets separated by the EMST’s longest
link, which contradicts the definition of r∗c .

1This elegant result is presented in many papers and books without proof. Try to prove it by yourself,
using the “proof by contradiction”. You will find a little later that many elegant theorems about the global
properties of ad hoc network is proved by contradiction in the literature.
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Figure 3: A sample set of 15 nodes and their EMST. The longest link is shown with a dash
line.

The assumption that r∗c is longer than the EMST’s longest link is trivially wrong, since
in this case all the nodes have been connected using distances shorter than r∗c by the EMST.
This completes the proof. 2

According to Theorem 2, computing the CTR is equivalent to computing the EMST on
the network nodes, and finding the longest edge in the EMST. Several algorithms exist for
finding the EMST; in this study, the Prim algorithm was used: starting with any single
node, new nodes are added to the tree one by one, so that at each step the node closest to
the nodes included so far is added. One realization with 15 nodes as well as their EMST is
depicted in Figure 3.
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Algorithm 1 Find r∗c (X)
Require: X = {x1, . . . , xn} // n: network size, xi ∈ R2 ∀i: position of node i
Ensure: R = r∗c (X)

Calculate D ∈ Rn×n : dij = ‖xj − xi‖ // the distance matrix
R ← maxi{minj{dij | dij > 0}} // the threshold range for minimum degree 1
S ← ∅ // the set of connected subnetworks
P ← {1, 2, . . . , n} // the set of nodes not yet included
while P 6= ∅ do // Note that P cannot contain only 1 element

C ← {P (1)} // the first element in P
P ← P \ {P (1)} // the first element in P
i ← 0
repeat

i ← i + 1
N ← {j | j ∈ P, dC(i)j ≤ R} // nodes within range R from C(i)
C ← C ∪N // Append N at end of C
P ← P \N

until P = ∅ ∨ i = card(C)
S ← S ∪ {C} // Maintain C as a set

end while
NS = card(S)
if NS > 1 then // run the Prim algorithm for the connected subnetworks

Calculate M ∈ RNS×NS : mij = min{dkl | k ∈ S(i), l ∈ S(j)} // M is the distance
matrix for the connected subnetworks
C ← {1}
P ← {2, · · · , NS} // the subnetworks not yet included
while P 6= ∅ do

s ← argmini∈P {mij | i ∈ C} // the closest subnetwork not yet included
r ← min{mij | i ∈ C, j ∈ P} // and its distance from the included subnetworks
C ← C ∪ {s}
P ← P \ {s}
R ← max{R, r}

end while
end if

Unfortunately, this way of calculating the CTR is not apt to distributed implementation,
since building the EMST requires global knowledge (the exact positions of all the nodes in
the network), which can be acquired in a distributed setting only by exchanging a consider-
able amount of messages. Furthermore, the requirement of knowing exact node positions is
very strong: in fact, in many situations, node locations cannot be determined a priori (for
instance, when sensors are dispersed on the field using a moving vehicle), and obtaining
exact location information when nodes are already deployed is, in general, quite expensive
(for instance, because many network nodes should be equipped with GPS receivers).
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2 Problem 2: CTR for Homogeneous Random Geographic
Graph (RGG)

2.1 Graphic Connectivity and Asymptotic Connectivity

For the reasons described above, considerable attention has been devoted to character-
izing the CTR in the presence of some form of uncertainty about node positions. A typical
approach is to assume that nodes are distributed in region R according to some probability
density function F , and to study the conditions for asymptotically almost sure connectivity.

The probabilistic characterization of the CTR can be of great help in answering fun-
damental questions that arise at the network planning stage, such as: given a number n
of nodes to be deployed in a certain region R, and given distribution F , which resembles
real-world node distribution, which is the minimum value r∗c (n,F) of the transmitting range
that ensures connectivity with high probability? Conversely, given a transmitter technology
(i.e. the value of rc) and distribution F , which is the minimal number n∗(rc,F) of nodes to
be deployed in order to obtain a connected network with high probability? The answer to
the questions above depends on the shape of R and on the distribution F used to distribute
nodes in R. In particular, we consider two probabilistic formulations of the CTR problem:

• Fixed deployment region: In this version of the problem, the side l of the deployment
region R is fixed (e.g. R is the unit square), and the asymptotic value of the CTR as
n → ∞ is investigated. In principle, results obtained for this version of the problem
can be applied only to dense networks. In fact, the value of the CTR is characterized
as the node density λ ≡ n

l2
grows to infinity, since l is an arbitrary constant.

• Deployment region of increasing side: In this version of the problem, the side l of the
deployment region is a further model parameter, and the asymptotic value of the CTR
as l → ∞ is investigated. In this model, l can be seen as the independent variable,
and both rc and n are expressed as a function of l (and of the distribution F). Since
in this version of the problem the node density λ ≡ n(l,F)

l2
can either converge to a

constant c ≥ 0 or diverge as l →∞, the theoretical results obtained using this model
can be applied to networks with arbitrary density.

2.2 Mathematical Preliminaries

2.2.1 Homogeneous Poisson Point Process

As already made apparent by the problem of connectivity, the geographical locations
of network nodes are an important factor affecting the performance of wireless multihop
networks, which underlines the need to model these locations. To take into account the
possibility of practically any con- figuration of nodes, the locations are usually treated as
random. Furthermore, unless more specific information is given, it is reasonable to assume
that, a priori, the locations are uniformly distributed.

To this end, let us assume that n nodes are randomly and independently located accord-
ing to the uniform distribution over some bounded domain A ⊆ R2 with an area ‖A‖ = A
(generalization to a higher number of dimensions is straightforward). Then the number
of nodes in any subdomain D ⊆ A is random, with the distribution Bin(n, ‖D‖/‖A‖).
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However, given the number of nodes n′ in any other non-intersecting subdomain D′, the
conditional distribution is different; hence, the two numbers are not independent. Keeping
our attention on the arbitrarily selected domains D and D′, let us consider the effect of
letting the domain A become larger and larger, while keeping the average node density
λ ≡ n/A constant. Since this makes ‖D‖/‖A‖, the probability that an arbitrary node is in
D, diminish but keeps the expected number of nodes therein n‖D‖/‖A‖ constant, in the
limit n,A → ∞ the above binomial distribution tends to a Poisson distribution with the
parameter λ‖A‖. In the same limit, the number of nodes in D depends less and less on n′

(because this leaves n− n′ nodes outside D, which also tends to infinity).
The point process that results in the limit is the homogeneous Poisson point process.

It can be interpreted as points “uniformly distributed” over the whole plane with average
density λ . It is completely characterized by the following two properties:

Definition 1 (homogeneous Poisson point process) A homogeneous Poisson point pro-
cess is defined by the following two properties:

• The number of nodes N in each finite subarea A of size ‖A‖ = A follows a Poisson
distribution, i.e.,

P(n nodes in A) = P(N = n) =
µn

n!
e−µ;n ∈ N ∪ {0},

with a mean value E(N) = µ = λA.

• The number of nodes Ni in disjoint (non-overlapping) areas Ai, i ∈ N, are independent
random variables, i.e.,

P(N1 = n1 ∧N2 = n2 ∧ · · · ∧Nk = nk) =
k∏

i=1

P(Ni = ni).

We denote this process as being homogeneous, if λ is constant over the entire infinitely
large area. In other words, the outcome of the random variable N only depends on the size
of the subarea A but not on its particular location or shape.

Random geometric graphs are easily described. A set of nodes is randomly scattered over
a region of space according to some probability distribution, and any two nodes separated
by a distance less than a certain specified value are connected by an edge.

In the literature, homogeneous random geometric graph means that the nodes are dis-
tributed as a homogeneous Poisson point process, or n nodes are placed uniformly and
independently in a region D, with homogeneous transmission range r(n). Based on above
discussion, we know that when n = λ →∞, they are almost the same.

2.2.2 Asymptotic Notation

In this subsection, we recall the standard notation regarding the asymptotic behavior
of functions. Let f and g be functions of a certain parameter x. We are interested in
characterizing the asymptotic behavior of f and g as x →∞.
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Definition 2 (big Oh notation and variants) Suppose f and g are two functions then
we shall write f(n) = O(g(n)) or equivalently, g(n) = Ω(f(n)), if there exists K > 0
such that limn→0

f(n)
g(n) ≤ K. We write f(n) = o(g(n)) if limn→0

f(n)
g(n) = 0. The notation

f(n) = Θ(g(n)) will mean that both f(n) = O(g(n)) and f(n) = Ω(g(n)). Finally, if
f(n) = o(g(n)), we shall also say f ¿ g or equivalently, g À f . The last might seem an
unnecessary extension, but it permits the simpler and obvious idiom: “· · · for any r(n) À
rc(n) · · · ” instead of “· · · for any r(n) such that rc(n) = o(r(n)) · · · ”

Definition 3 (a.a.s. event) Let Ex be a random event that depends on a certain param-
eter x. We say that Ex holds asymptotically almost surely (a.a.s.) or with high probability
(w.h.p) if limx→∞ P(Ex) = 1.

Most work in the literature is concerned with asymptotic properties (a.a.s) for large
graphs (network size n → ∞). Here we also focus on asymptotic connectivity properties
(In Gupta and Kumar’s capacity paper, the “capacity” they discussed is also in the a.a.s.
sense). Why? Determine the probability that a random network2 is connected is equivalent
to knowing the distribution of the critical transmission range r∗, which is also a random
variable. For a finite number of nodes n, the distribution of r∗ is not known even in the
simplest cases such as uniform distribution on a domain with a simple shape. If you do not
believe me, you can try by yourself, just calculating the distribution of r∗ when n = 3 or 4,
you will find it is very difficult. The distribution of r∗ only known asymptotically, as the
number of nodes in the network tends to infinity. All the existing precise analytical results
are asymptotic in nature. Frankly speaking, we are interested in the case when n →∞, not
because we are considering scalability problem, just because we can get analytical results in
this case. Precise computation of probabilities for properties of random network is usually
unfeasible except for small values of n, and understanding their average case behavior may
be a useful alternative to exact computation, this motivates our interest in asymptotic
theory.

Why when we assume n → ∞, everything become simpler? Let me expain it using an
example taken from [Spencer01]. We will be looking at labeled graphs G on n vertices. For
convenience we’ll call the vertices {1, · · · , n}. Imagine that every pair i, j of vertices flips a
fair coin to decide whether or not to be connected. We call the outcome the random graph
G(n, 1

2). In fact G(n, 1
2) is a set of graphs, and the number of such graphs is precisely 2(

n
2)

as each of the
(
n
2

)
pairs i, j can be either connected or not connected. Consider a graph

property — for example, the property of containing a triangle, we call it the property A. We
set µn(A) equal the proportion of graphs in G(n, 1

2) that have the property A. A precise
evaluation of µn(A) might be very difficult. However, we can easily prove the following
theorem about µn(A) when n →∞ (prove it by yourself before you read the proof):

Theorem 3 limn→∞ µn(A) = 1

Proof: Split the vertices into s = bn
3 c disjoint triples. A triple i, j, k forms a triangle with

probability precisely 1
8 . These are independent events as they involve distinct coin flips.

2Here, we say random network in the general sense, means that there are some randomness in the positions
of nodes.
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Thus the probability that none of the s triples form a triangle is (7
8)s. This goes to zero as

n, and therefore s, goes to infinity. 2

Sometimes a “silly” example can be instructive. In the same sprit, you can prove the
following old saying:

The infinite monkey theorem states that a monkey hitting keys at random on a type-
writer keyboard for an infinite amount of time will almost surely type or create a particular
chosen text, such as the complete works of William Shakespeare. (Note that ”almost surely”
in this context is a.a.s. we just defined, and that the “monkey” is not an actual monkey;
rather, it is a vivid metaphor for an abstract device that produces a large, random sequence
of letters.)

2.3 Gupta and Kumar’s Asymptotic Connectivity Paper

In this section, we discuss Gupta and Kumar’s asymptotic connectivity paper [Gupta98]
in detail. In fact, except a result borrowed from Continuum Percolation Theory, all the
details can be understood with the background of undergraduate mathematics. Even you
may forget those things, we will provide the related background knowledge when necessary,
and try to explain the basic ideas behind the proof procedures as clear as possible. So,
please try to read the original paper by yourself with the help of the explanations provided
in this section.

2.3.1 Main Result

Theorem 4 (Gupta & Kumar’s Asymptotic Connectivity) Let D be a disc in the
plane R2 having unit area. Let G(n, r(n)) be the network (graph) formed when n nodes
are placed uniformly and independently in D, with homogeneous transmission range r(n) =√

log(n)+c(n)
πn . Then the resulting network G(n, r(n)) is connected a.a.s. if and only if c(n) →

+∞.

Theorem 4 can be expressed as follows which may be more clear: G(n, r(n)) is connected
a.a.s. if and only if limn→∞

(
πr2(n)n − log n

) → +∞. Note that the theorem do not give
any constriction on the speed when c(n) tends to infinity. Since in practice, we want a small
r(n), the speed of r(n) tending to infinity can be set arbitrary small. In most simulation
study, the researcher usually sets c(n) = log log n.

2.3.2 Outline of Proof of Necessity

We first discuss Section 2 of [Gupta98], the proof of necessary condition on r(n) for
connectivity. We need to prove:

When r(n) =

√
log(n) + c(n)

πn
,
{

lim
n→∞P{G(n, r(n)) is connected} = 1

}
=⇒

{
lim

n→∞ c(n) = +∞
}

.

(1)
Because the event {G(n, r(n)) is connected} is difficult to handle, we try to consider the

event {G(n, r(n)) is disconnected}. Let Pd(n, r(n)) ≡ P{G(n, r(n)) is disconnected}, then
{

lim
n→∞P{G(n, r(n)) is connected} = 1

}
=

{
lim

n→∞Pd(n, r(n)) = 0
}

. (2)
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If we can get a tight lower bound of Pd(n, r(n)), i.e., f(n, r(n)), then the necessary
condition for connectivity is that this lower bound must tend to zero when n goes to infinity.

When f(n, r(n)) ≡ lim inf
n→∞ Pd(n, r(n)),

{
lim

n→∞Pd(n, r(n)) = 0
}

=⇒
{

lim
n→∞ f(n) = 0

}
.3

(3)
If we want to prove (1), this lower bound must be expressed as the function of c(n).

The problem is how to get f(n, r(n)), the lower bound of Pd(n, r(n))? Recall that we
mentioned before that connectivity is a global property which is difficult to handle while
isolation is a local property which is easy to investigate, we can begin from the isolation.
Let P (1)(n, r(n)) ≡ P{G(n, r(n)) has at least one isolated node}. Obviously, Pd(n, r(n)) ≥
P (1)(n, r(n)). Now, let’s concentrate on analyze the lower-bound of P (1)(n, r(n)), and try
to get its relationship with c(n).

P (1)(n, r(n)) ≥
n∑

i=1

P{i is the only isolated node in G(n, r(n))}

≥
n∑

i=1

P{i is isolated in G(n, r(n))} −
∑

j 6=i

P{i and j are isolated in G(n, r(n))}

From the definition of HPPP (Definition 1), we have

P{i is not the neighbor of j} = P{i is not in the disk centred at j with radius r(n)} = (1−πr2(n))

Therefore, P{i is isolated in G(n, r(n))} = (1− πr2(n))n−1 and

P{i and j are isolated in G(n, r(n))}
=

(
4πr2(n)− πr2(n)

)
︸ ︷︷ ︸

prob. when j is in the shadow area

(
1− δπr2(n)

)n−2 +
(
1− 4πr2(n)

)
︸ ︷︷ ︸

prob. when j is not in the shadow area

(
1− 2πr2(n)

)n−2

where 1 ≤ δ < 2. Figure 4 give an illustration on how to calculate this probability.
3Let S be a set of real numbers. A lower bound for S is a number B such that x ≥ B for all x ∈ S. The

infinum (inf, greatest lower bound) of S is the greatest lower bound for S. An lower bound which actually
belongs to the set is called a minimum.
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Figure 4: Calculating P{i and j are isolated in G(n, r(n))}. (a) the case when j is at a
distance between r(n) and 2r(n) from i; (b) the case when j is 2r(n) away from i.

We get the lower bound of P (1)(n, r(n)):

P (1)(n, r(n)) ≥ n(1− πr2(n))n−1 − n(n− 1)
(
3πr2(n)(1− δπr2(n))n−2 + (1− 4πr2(n))(1− 2πr2(n))n−2

)

≥ n(1− πr2(n))n−1 − n(n− 1)
(
3πr2(n)(1− δπr2(n))n−2 + (1− 2πr2(n))n−2

)

(Note: (1− 4πr2(n)) → 1 when n →∞)

≥ θe−c − n(n− 1)(3πr2(n)e−δ(n−2)πr2(n) + e−2(n−2)πr2(n))
(Note: using Lemma 2.2 and Lemma 2.1 (i) in [Gupta98])

≥ θe−c − n2(3πr2(n) + 1)e−2(n−2)πr2(n)( Note: 1 ≤ δ < 2)

= θe−c − (3πr2(n) + 1)
(
n
(
e−πr2(n)

)n−2
)2

≥ θe−c − (3πr2(n) + 1)
(
n
(
1− πr2(n)

)n−2
)2

( Note: using Lemma 2.1 (ii) in [Gupta98])

≥ θe−c − κe−2c( Note: using Lemma 2.2 in [Gupta98])

Then we get Pd(n, r(n)) ≥ θe−c− κe−2c. Therefore, the necessary condition for connec-
tivity is that c = +∞. In completing the proof for c = limn→∞ c(n), we use the fact that if

r(n) =
√

log(n)+c
πn , then the probability of disconnectedness is monotonically decreasing in

c.

2.3.3 Outline of Proof of Sufficiency

We then discuss Section 3 of [Gupta98], the proof of sufficient condition on r(n) for
connectivity. We first correct an error in this paper. The equation (1.11) in [Gupta98]
should be:

lim
λr2(λ)→+∞

1
q1(λ, (λ))

∞∑

k=1

qk(λ, (λ)) = 1.

We need to prove:

When r(n) =

√
log(n) + c(n)

πn
,
{

lim
n→∞ c(n) = +∞

}
=⇒

{
lim

n→∞P{G(n, r(n)) is connected} = 1
}

.

(4)
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We still use the relation in equation (2). The idea is to get the upper-bound of
Pd(n, r(n)), i.e. g(n, r(n)) ≡ lim supn→∞ Pd(n, r(n)). If we can prove that when c(n) →∞,
g(n, r(n)) → 0, we are done.

How to get the upper-bound of Pd(n, r(n))? We need to borrow a result from continuum
percolation theory, and this theory is derived based on a little different model. Suppose nodes
are thrown with Poisson intensity λ in the plane R2. From continuum percolation theory
(Theorem 6.3 in [Meester96]), we know that GPoisson(λ, r(λ)) has at most one infinite-order
cluster. Furthermore, the node at the origin lies in either an infinite-order cluster or it is
isolated.

Consider the restriction GPoisson
D (n; r(n)) of the point process to unit disc D. Then, the

probability PPoisson
d (n, r(n) that GPoisson

D (n, r(n)) is disconnected is asymptotically same
as the probability PPoisson;(1)(n, r(n)) that it has at least one isolated node. So, again we
just need to analyze the probability related to the isolated nodes. The difference here is
that in order to get sufficient condition, we need to get upper-bound of the probability.

The last thing we need to do is to relate this result to n nodes uniformly i.i.d. on the
unit disc (G(n, r(n)) model) by restricting GPoisson(λ, r(λ)) to the disc and showing that
difference between the restriction and G(n, r(n)) is asymptotically negligible. The difference
between GPoisson

D (n, r(n)) and G(n, r(n)) is that, for G(n, r(n)), the number of nodes in the
unit disk is a constant number λ while for GPoisson

D (n, r(n)) is a random variable following
the Poisson distribution with the mean λ. However, when n = λ →∞, intuitively we know
the difference is negligible. Therefore, in the following, we just discuss the details of the
first step: proving that lim supn→∞ P

Poisson;(1)
d (n, r(n)) ≤ e−c.

lim sup
n→∞

P
Poisson;(1)
d (n, r(n)) =

∞∑

j=1

P (1)(j, r(n)) e−n nj

j!︸ ︷︷ ︸
prob that GPoisson

D (n,r(n)) has j nodes

(5)

For network G(j, r(n)), let Ai be the event that node i is isolated (i.e., it is not in the
transmission range of any other j − 1 node), and let A ≡ ∪j

1=1Ai be the event that there is
at least one isolated node in the network G(j, r(n)). Recall that P(Ai) = (1 − πr2(n))j−1.
From the union bound, P(∪j

i=1(Ai)) ≤ Σj
i=1P(Ai), we can write

P (1)(j, r(n)) = P(A) ≤ j(1− πr2(n))j−1. (6)

Substituting (6) in (5), we get

P
Poisson;(1)
d (n, r(n)) ≤

∞∑

j=1

j(1− πr2(n))j−1e−n nj

j!

= ne−n
∞∑

j=0

(
n(1− πr2(n))

)j

j!

= ne−nen(1−πr2(n))( Note: using formula
∞∑

j=0

xj

j!
= ex)

= ne−nπr2(n) = elog n−nπr2(n) = ec(n)
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Figure 5: The proof procedure of Gupta & Kumar’s asymptotic connectivity theorem.

2.3.4 Summary of the Proof Procedure

The procedure of the proof is summarized in Figure 5. It will be helpful when you feel
lost in the forest of inequalities. The basic idea is to convey the connectivity problem to
the calculation of network disconnected probability Pd(n, r(n)), and the calculation of the
lower and upper bound of Pd(n, r(n)) can be implemented by calculating the probabilities
about isolated nodes, which is easier to handle.

The proof is not given in a constructive way, so even we understand every step, it is still
difficult for us to guess how the author get the result of πr2(n)n − log n → ∞ at the very
beginning? What is the key point here to guess this result before you prove it? The answer
is the percolation result. In fact we can get this result in a very natural way if we treat the
fact that when the network is percolated, the network has no isolated nodes is equivalent
to the network is connected, as the starting point of the thinking procedure. We will give
our own simple proof following this idea in the class.

2.4 Penrose’s Asymptotic Connectivity Papers

In fact, before the publication of [Gupta98], Penrose already published a paper in 1997
with a more general result about asymptotic connectivity properties of RGGs [Penrose97].
For a long time it is not noticed by networking guy, since it is a pure mathematical paper.
However, results in this paper and other papers by Penrose are very useful when we discuss
more sophisticated cases, such as ununiform distribution of nodes. The proofs in those
papers are highly technical and uses the Chen-Stein method, so we cannot treat those
papers as Gupta’s, and explain every step in detail. Instead, we can only explain the exact
meaning of their results.
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