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1 Introduction to Communications Networks

1.1 Why do we need this course

This course is to present the methods for the design of computer communication networks to
support many interesting applications. The tools developed in this course can be used for network
design, service provisioning, and resource dimensioning.

Example 1: You just join a company, which is in the process of upgrading their systems. You are
asked to evaluate the computer networks, create a budget plan for the company. What should you
do?

Solution: Evaluate the traffic and potential future traffic, decide how much network capacity is
necessary, then carry out a cost analysis, etc

Example 2: A major WAN service provider (e.g., ATT/Verizon) intends to install an optical fiber
link between Gainesville and Orlando, you are responsible for the link design? What should you
do?

Possible solution: Predict/analyze the traffic the link has to handle and the service characteristics,
possibly the QoS requirements, then decide how many wavelengths you need in the waveguide.

Example 3: A wireless services provider just won an FCC auction bid for a chunk of frequency
to be used, you are hired with big money to figure out how to build their wireless networks in
Gainesville area. In one week, you have to propose the building plan, what should you do?

Possible solution: Figure out what you need: man power, resources, field study etc. You have to
hire a traffic engineer to perform the traffic analysis!

Example 4: You study computer sciences and want to do a business on web hosting. How much
money do you want to spend for your server?

1.2 Historical Overview

• Primitive forms of communications (e.g., smoke signals)

• Marconi’s experiments on radio communications (wireless telegraphy) in 1897

• Armstrong’s FM technology revolution in 1938
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• Shannon’s paper and information theory in 1948

• von Neuman’s paper and invention of computers in 1948

• Central computers to remote terminals and other peripheral devices (1950s)

• Network with one central processors but with shared links

• Local area networks (LANs)

• Wide area networks (WANs)

• Internet

• Globalization of service integration

– Wireless communications

– Optical Communications

1.3 Communication Technology

• Wired: cable or optical fiber or powerline or phoneline — high speed

• Wireless: radio, microwave, infrared, satellite — convenience

1.4 Applications

• Remote access and computing, file transfer

• Remote update and transactions

• Electronic mail

• Telephony: voice services

• Video conferencing

• Internet surfing

• E-commerce/m-commerce

• Telemedicine
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• Faxing via Internet, Internet Telephony (IP telephony)

• Internet gaming (Internet entertainment)

• Distance learning

• Digital library and digital government

• Web publishing

• Fight crimes: Woodstock’99 criminal identification

• More...we could not live without...

1.5 Information Transfer Units

• Message: independent data unit which has its meaning itself.

• Packet: Parts of a message, used for easier information transfer, the concept which revolu-
tionized the data communications.

1.6 Sessions

• A process for fulfilling the communications between two end points or one point with many
points.

• Modeling such processes are very important:

– Message arrivals: the rate and the variability

– Session holding time

– Message length: mean and its distribution

– Allowable delay: QoS

– Reliability: error characteristics

– Message and packet ordering: must be delivered in order
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1.7 Switching

• Circuit switching (message switching)

• Packet switching (store-and-forward)– second revolution

• Virtual circuit switching: resource sharing idea—third revolution (ATM)

1.8 Layering

Layering, or the layered architecture, is a form of hierarchical modularity that is central to data
network design—peering process design.

• Physical layer: raw bits transfer from point to point

• Data link control layer: reliable transfer of frames from point to point

– Logical link layer: hiding physical media from high layer

– Multiple access control (MAC): multiple users share a single link

• Network layer: choosing the right path to move packets around effectively and efficiently
–routing and congestion control

• Transport layer: Packaging —dissembling/assembling, flow control, call admission control,
reliability check in the message level

• Session layer: handling the interactions between two end points in setting up a session

• Presentation layer: data encryption, data compression, and code conversion

• Application layer: Yes, various applications–telnet, ftp

1.9 Network design

• Network throughput—network capacity

• Network delay — point-to-point, end-to-end

• Network dimensioning — resource (storage and transmission)

• QoS — voice, data, multimedia —more important than ever

• Connection blocking and dropping
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2 Probability Refresher

2.1 The intuition of probability

It is the frequency of the same something happening, you could understand it as the “possibility”,
although it is NOT accurate mathematically.

Three components:

• A set of possible experimental outcomes;

• A group of these outcomes into classes called results

• The relative frequency of these results

2.2 Mathematical model

• A sample space S

• Events: a set of sets in S—E

• Probability measure P : a nonnegative function defined on E satisfying: 0  P (A)  1,
P (S) = 1, P (A [ B)  P (A) + P (B) for any A 2 E and B 2 E .

Remark: The union [ and the intersection \ are defined as usual.

Mutually exclusive: disjoint, A \ B = ;.

Exhaustive:
SN

i Ai = S.

Mutually exclusive and exhaustive:
SN

i Ai = S and Ai \ Aj = ;.

Conditional Probability: absolute probability is the probability that no prior knowledge is known,
while the conditional probability is the probability when some information is known.

P (A|B) =
P (A \ B)

P (B)
.

2.3 Independence

A and B are called independent iff P (A \ B) = P (A)P (B), i.e., P (A|B) = P (A).
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2.4 Theorem of total probability

If A1, A2, . . . , AN are mutually exclusive and exhaustive, then for any B 2 E , we have

P (B) =
NX

i=1

P (Ai \ B) =
NX

i=1

P (B|Ai)p(Ai).

2.5 Bayes’ Theorem

If A1, A2, . . . , AN are mutually exclusive and exhaustive, then for any B 2 E , we have

P (Ai|B) =
P (B|Ai)P (Ai)

PN
j=1 P (B|Aj)P (Aj)

.

2.6 Random variables

Definition: X(!) or simply X—a mapping from S to R (the set of real numbers) satisfying (X 
x) 2 E .

Characterization: probability distribution, (X = x) = {! : X(!) = x}. In discrete case,
P (X = xi) = pi. In continuous case, P (X  x) = P (! : X(!)  x).

CDF: Cumulative distribution function— (p1, p2, . . . , pK) for discrete case, F (x) = P (X  x)

for continuous case.

Properties of CDF: 0  F (x)  1, F (1) = 1, F (�1) = 0, and P (a < X  b) = F (b)�F (a),
F (b) � F (a) if b � a.

pdf: Probability density function (mass function)—

f(x) =
dF (x)

dx

or
F (x) =

Z x

�1
f(t)dt.

Property of pdf: f(x) � 0 and
R1
�1 f(x)dx = 1 and

P (a < X  b) =
Z b

a
f(x)dx.



Fang: EEL6507–Queueing Theory 8

Example: exponential distribution

f(x) = �e
��x

, x � 0;

F (x) = 1� e
��x

, x � 0.

2.7 Random vector and joint probability distribution

Random vector: X = (X1, X2, . . . , Xn) where Xi is a random variable, must satisfy (X 2 B) 2
E where B is a measurable set in n�dimensional Euclidean space R

n.

Joint distribution: For x = (x1, x2, . . . , xn),

F (x) = F (x1, x2, . . . , xn) = P (X1  x1, X2  x2, . . . , Xn  xn)

= P [(X1  x1) \ (X2  x2) \ · · · \ (Xn  xn)].

pdf:

f(x) = f(x1, x2, . . . , x2) =
@
n
F (x1, x2, . . . , xn)

@x1@x2 · · · @xn
,

or
F (x1, x2, . . . , xn) =

Z x1

�1

Z x2

�1
· · ·

Z xn

�1
f(t1, t2, . . . , tn)dtndt2 · · · dt1.

Independence: X1, X2, . . . , Xn are independent iff

f(x1, x2, . . . , xn) = f1(x1)f2(x2) · · · fn(xn).

Conditional probability density function:

fX|Y (x|y) =
d

dx
P [X  x|Y = y] =

fXY (x, y)

fY (y)
.

Function of a random variable: Y = g(X),

FY (y) = P (Y  y) = P ({! : g(X(!))  y}).

2.8 Expectation

Definition

E[⇠] =
nX

i=1

⇠iP (⇠ = ⇠i) (discrete)
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E[⇠] =
Z 1

�1
xf(x)dx =

Z 1

�1
xdF (x) (continuous)

E[�(⇠)] =
Z 1

�1
x�(x)f(x)dx =

Z 1

�1
�(x)dF (x) (general)

E[�(X1, X2, . . . , Xk)] =
Z 1

�1

Z 1

�1
· · ·

Z 1

�1
�(x1, x2, . . . , xk)dF (x1, x2, . . . , xk)

Properties: linear, independence.

Concepts:

E[Xn] =
Z 1

�1
x
n
f(x)dx (nth moment)

E[X � E(X)]n =
Z 1

�1
(x� E(X))nf(x)dx (nth central moment)

�
2
X = E(X � E(X))2 = E(X2)� [E(X)]2 (variance)

CX =
�X

E(X)
(coefficent of variation)

2.9 Transforms

Characteristic function

�X(u) = E[ejuX ] =
Z 1

�1
e
jux

fX(x)dx.

Moment generating function:

MX(v) = E[evX ] =
Z 1

�1
e
vx
fX(x)dx.

Laplace transform of the pdf:

f
⇤(s) = E[e�sX ] =

Z 1

�1
e
�sx

fX(x)dx.

probability generating function: for discrete case

G(z) = E[zX ] =
X

k

z
k
P (X = k).

Properties

1. E[Xn] = (�j)n�(n)
X (0) = M

(n)
X (0) = (�1)nf ⇤(n)(0).

2. Pr(X = k) = G
(k)(0)/k!.

3. Let �(u1, u2, . . . , uk) = E[ej(u1X1+u2X2+···+ukXk)] be the characteristic function of the ran-
dom vector (X1, X2, . . . , Xk). Random variables X1, X2, . . . , Xk are independent iff �(u1, u2, . . . , uk) =

�X1(u1)�X2(u2) · · ·�Xk
(uk). This statement is still valid when we use the moment generat-

ing function and the Laplace transform instead of characteristic function.
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3 Markov Chain Theory

“Life is a Markov chain, the future depends on the current, but independent of the past.” (MIT
BBS)

3.1 Stochastic Processes

Definition: X(t,!) or simply X(t) is called stochastic process (random process) if it is a measur-
able mapping from the probability space (S, E , P ) to the real line R: for each fixed t, X(t) is a
random variable and for each fixed !, X(t) is a measurable function on R.

Examples: stock price, the number of users in a computer system, the number of customers in a
supermarket, the number of busy channels in a cell in a cellular network, etc.

Characterization: Distribution FX(x, t) = P (X(t)  x); Joint distribution function: for any
t1, t2, . . . , tn and x1, x2, . . . , xn,

FX(x, t) = FX1X2···Xn(x1, x2, . . . , xn; t1, t2, . . . , tn) = P (X(t1)  x1, X(t2)  x2, . . . , X(tn)  xn).

where x = (x1, x2, . . . , xn) and t = (t1, t2, . . . , tn).

Stationarity: A process X(t) is said to be stationary if for any ⌧ ,t1, t2, . . . , tn and x1, x2, . . . , xn,
we have

P (X(t1+⌧)  x1, X(t2+⌧)  x2, . . . , X(tn+⌧)  xn) = P (X(t1)  x1, X(t2)  x2, . . . , X(tn)  xn),

i.e., the joint distribution function is time-shift invariant.

Correlation: mean E(X(t)), autocorrelation:

RXX(t1, t2) = E[X(t1)X(t2)].

Wide-sense stationarity: A random process X(t) is wide-sense stationary if its mean and auto-
correlation functions are time-shift invariant, E[X(t)] = c and RXX(t1, t2) = RXX(t2 � t1).

3.2 Markov Processes

General Interpretation: A random process is called a Markov process if the future does not
depend on the past when the current information is available, i.e., when the current information is
known, the future and the past are independent.
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Intuitive examples: The number of customers in the supermarket; the number of call arrivals in
a cell in cellular systems. The non-Markov process: the long term investment returns, the web
traffic.

Classification: The set of value a process can assume is called the state space. Both time and space
can be either discrete and continuous, this leads to discrete-time Markov process and continuous-
time Markov process. If the state space is a discrete set (either finite or infinite), the Markov process
is called Markov chain. In this course, we concentrate on the Markov chain only.

3.3 Discrete-time Markov process

Definition: {Xn} is a discrete time random process, if for any integer m and any measurable sets
An+1, An, . . . , An�m, we have the following

P (Xn+1 2 An+1|Xn 2 An, . . . , Xn�m 2 An�m) = P (Xn+1 2 An+1|Xn 2 An),

then we call this process the discrete-time Markov process.

Discrete-time Markov chain: A random process Xn with discrete state space is called discrete-
time Markov chain if for any integers m and any states xn+1, xn, . . . , xn�m, we have

P (Xn+1 = xn+1|Xn = xn, Xn�1 = xn�1, . . . , Xn�m = xn�m) = P (Xn+1 = xn+1|Xn = xn).

If the state space is finite set, the the process is called finite state Markov chain.

Characterization of finite state Markov chain: the probability transition matrix: P = (pij(n))

where
pij = P (Xn+1 = j|Xn = i).

If pij(n) does not depend on the time n, i.e., pij(n) = pij , then the chain is called homogeneous
finite state Markov chain. We will concentrate on homogeneous Markov chain only. The m�step
transition probability is defined as

p
(m)
ij = P (Xn+m = j|Xn = i).

From the Theorem of total probability, we have the following Chapman-Kolmogrov equations:

p
(m)
ij =

X

k

p
(m�1)
ik pkj =

X

k

pikp
(m�1)
kj .

More generally, for any 0 < l  m

p
(m)
ij =

X

k

p
(l)
ik p

(m�l)
kj ,
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which is equivalent to
P

m = P
l · Pm�l

.

A state j is said to be reachable from state i if there exists an integer m0 such that p(m0)
ij > 0. A

Markov chain is said to be irreducible if every state is reachable from any other state. We say that
a state i is periodic if there exists some integer m � 1 such that p(m)

ii > 0 and some integer d > 1

such that p(n)ii > 0 only if n is the multiple of d. A Markov chain is said to be aperiodic if none of
its states is periodic. A probability distribution {pj|j � 0} is said to be stationary distribution for
the Markov chain if

pj =
X

i

pipij, j � 0,

or equivalently,
⇡ = ⇡P, ⇡ = (p0, p1, p2, . . .).

Let
pj = lim

n!1
P (Xn = j|X0 = i), i � 0

(which exists and is independent of initial state i for irreducible and aperiodic Markov chain). It
can also be shown that

pj = lim
k!1

number of visits to state j up to time k
k

which implies that pj is the proportion of time or the frequency with which the process visits j, a
time average interpretation.

Fundamental Theorem of Markov chain: In an irreducible, aperiodic Markov chain, there are
two possibilities for the scalars pj = limn!1 P (Xn = j|X0 = i):

(1) pj = 0 for all j � 0, in which case the chain does not have stationary distribution;

(2) pj > 0 for all j � 0, in which case {pj|j � 0} is the unique stationary distribution of the
chain, i.e., it satisfies the following set of equations: ⇡ = ⇡P and ⇡ · e = 1 where e is a
column vector with all entries equal to unity.

Remarks: Case (1): the number of customers in a queueing system where the arrival rate is greater
than the service rate. Case (1) never arises for finite state Markov chain!

Global balance equation:
1X

i=0

pjpji =
1X

i=0

pipij,
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which implies that the flow-out probability (left hand side) is equal to flow-in probability (right
hand side). A generalized version is as follows:

X

j2I

X

i/2I
pjpji =

X

i/2I

X

j2I
pipij

where I is a subset of states.

Detailed balance equations: Sometimes, the probability transitions only occurs to the neighbors
such as in birth-death process, in which case we have

pipij = pjpji, i, j � 0

this is called detailed balance equation.

Partial balance equations: For every state j, consider a partition S
1
j , . . . , S

k
j of the complementary

set of states {i|i � 0, i 6= j}, the partial balance equations are given

pj

X

i2Sm
j

pji =
X

i2Sm
j

pipij, m = 1, 2, . . . , k.

3.4 Continuous-time Markov chain

Definition: A random process X(t) with discrete state space is called a continuous-time Markov
chain if for any time instants t1  t2  · · ·  tn  tn+1 and states i1, i2, . . . , in, in+1, we have

P [X(tn+1) = in+1|X(tn) = in, . . . , X(t1) = i1] = P [X(tn+1) = in+1|X(tn) = in].

An equivalent characterization is the following:

(a) Exponential sojourn time: the time the process spends in any state i is exponentially dis-
tributed with parameter vi;

(b) Markov jump process: when the process leaves the state i, it will enter state j with probability
pij , where

P
j pij = 1.

Define
qij = ⌫ipij, i, j � 0

which can be shown to be the transition rate from state i to state j. Assume that the embedded
Markov chain is irreducible. Let

pij(s, t) = P (X(t) = j|X(s) = i), H(s, t) = (pij(s, t)),
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then we have the following Chapman-Kolmogrov equations

pij(s, t) = P (X(t) = j|X(s) = i) =
X

k

pik(s, u)pkj(u, t)

i.e.,
H(s, t) = H(s, u)H(u, t), H(t, t) = I

for any s  u  t and I is the identity matrix. If the probability transition matrix H(s, t) does not
depend on the time, i.e., H(s, t) is a function of the time difference t � s, then the chain is called
homogeneous Markov chain. As in the discrete-time case, we have

pij(s, t+�t) = P (X(t+�t) = j|X(s) = i) =
X

k

pik(s, t)pkj(t, t+�t)

or
H(s, t+�t) = H(s, t)H(t, t+�t),

thus we have

H(s, t+�t)�H(s, t) = H(s, t)[H(t, t+�t)�H(t, t)] = H(s, t)[H(t, t+�t)� I],

by dividing both sides by �t and by letting �t ! 0, we obtain the forward Chapman-Kolmogorov
equation

@H(s, t)

@t
= H(s, t)Q(t)

where
Q(t) = lim

�!0

H(t, t+�t)� I

�
,

i.e.,

qii(t) = lim
�!0

pii(t, t+�t)� 1

�t

qij(t) = lim
�!0

pij(t, t+�t)

�t
, i 6= j

Remark: We have pii(t, t+�)�1 = qii(t)�+o(�t), i.e., 1�pii(t, t+�t) = �qii(t)�t+o(�t),
which implies that the departure rate from state i is �qii(t), i.e., the “service time” or the sojourn
time at state i is exponentially distributed. We also have pij(t, t+�t) = qij(t)�t+ o(�t) (i 6= j).

Flow rate equations:
X

j

qij = 0, i � 0.

Similarly, we have the backward Chapman-Kolmogrov equation

@H(s, t)

@s
= �Q(s)H(s, t), s  t.
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We also have
H(s, t) = e

R t

s
Q(u)du

.

Probability distribution: Let

pj(t) = P (X(t) = j), j � 0 and⇡(t) = (p0(t), p1(t), . . .).

Given any initial distribution ⇡(0), we have

⇡(t) = ⇡(0)H(0, t) = ⇡(0)e
R t

0
Q(u)du

,

or
d⇡(t)

dt
= ⇡(t)Q(t).

Homogeneous Markov chain: If the Markov chain is homogeneous, i.e., H(s, t) only depends on
the time difference t� s, we can have simpler results. Let

pij(t) = pij(s, s+ t)

qij = qij(t), i, j � 0

H(t) = H(s, s+ t) = (pij(s, s+ t))

Q = Q(t) = (qij)

We have

H(s+ t) = H(s)H(t)

dH(t)

dt
= H(t)Q = QH(t), H(0) = I

H(t) = e
Qt

d⇡(t)

dt
= ⇡(t)Q = ⇡(0)eQt

If the chain is irreducible, we have

pj = lim
t!1

P (X(t) = j|X(0) = i) = lim
t!1

Tj(t)

t
,

where Tj(t) is the time spent in state j up to time t.

Fundamental Theorem of Markov chain: For an irreducible homogeneous Markov chain, the
limits

pj = lim
t!1

pij(t) = lim
t!1

pj(t)
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always exist, is independent of the initial state i and satisfy the following equations:

⇡Q = 0, ⇡ · e = 1,

where ⇡ = (p0, p1, p2, . . .) and e = (1, 1, 1, . . .)T (T denotes the transpose).

global balance equations:
pj

X

i

qji =
X

i

piqij, j � 0

i.e., the flow rate out of state j is equal to flow rate into state j.

Detailed balance equations:
pjqji = piqij, i, j � 0.
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Homework # 1

1. The exponential distribution for the random variable ⇠ has the following density function

f(t) = �e
��t

, t � 0.

(1). Find the mean, the variance and the coefficient of variation;

(2). Find the characteristic function, moment generating function and the Laplace transform
of the pdf;

(3). Show that the exponential distribution has the following memoryless property: for any
s � 0 and t � 0, we have

P (⇠ � s+ t|⇠ � s) = P (⇠ � t).

In fact, a stronger version can be shown: for any nonnegative random variable ⌫, we
have

P (⇠ � t+ ⌫|⇠ � ⌫) = P (⇠ � t).

2. Find the pdf for the smallest of K independent random variables, each of which is exponen-
tially distributed with parameter �. Find the Laplace transform of the pdf for the sum of the
K independent random variables, each of which is exponentially distributed?

3. Consider the discrete-time, discrete-state Markov chain with the probability transition matrix
✓

0.5 0.5
0.75 0.25

◆
.

Find the stationary state probability vector ⇡. Suppose that you are an outsider observer and
observe the evolution of the Markov chain, how often you find the chain stay in the state 1?
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4 Queueing Systems Basics and Little’s Theorem

4.1 Introduction

Examples

• Supermarket checkout model: multiple server systems

• Factory assembling line: tandem queues

• Cellular networks: a single cell model

• Web server: time-sharing systems

• Cloud server model and interconnected cloud servers (cloud center)

• IP phone services

• Analysis of medium access control protocols and ARQ protocols

• · · ·

Common features

• Arrival process (jobs)

• Serving process (servers)

• Service discipline (ordering)

Performance Indices

• Number of jobs/customers in the systems

• Delay per customer/overall delay (network delay)

• Throughput in shared network

• Blocking probability/loss probability when resource is limited

Why are we interested?: network design
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• Network dimensioning

• QoS: delay requirement or loss probability

What do we need?

• The customer/job arrival process: interarrival time distribution

• The service time distribution

• Service disciplines: FIFO

How do we conduct the performance evaluation?

• Queueing theory (analytical approach)

• Simulations

4.2 Classification: Kendall’s notation

Kendall notation

• Arrival process/service process/# of servers/# of buffers/population model

• G/G/m/m/F

– G—general distribution

– M—Markov process/exponential distribution

– D—constant distribution

– F—finite population

– 1 — when m = 1, the notation will be omitted

• M/M/1: Poisson arrival, exponential service time, single server and infinite buffer

• M/G/1: Poisson arrival, general service time and single server

• G/M/1: general arrival, exponential service time and single server

• M/M/1/m: Poisson arrival, exponential service time, finite buffer
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• M/M/m/m: Poisson arrival, exponential service time, finite servers and finite buffers

• G/G/1: general arrival, general service time and single server

Remark: In all notations, the arrival process and the service process are assumed to be independent.

4.3 Exponential distribution and Poisson processes

Exponential distribution: The most important distribution in computer networks.

Let X be distributed with the following exponential distribution:

FX(x) = P (X  x) = 1� e
�µx

, fX(x) = µe
�µx

, x � 0.

Memoryless property: 8r, t � 0, we have

P (X � r + t|X � t) = P (X � r).

Strong Memoryless Property (Fang 1999): 8 random variable ⇠ � 0 and 8 time r � 0, we have

P (X � ⇠ + r|X � ⇠) = P (X � r).

Proof: Let 1/µ = E[X] and let f⇠(y) denote the probability density function of ⇠, then we have

Pr(X � ⇠ + r|X � ⇠) =

R1
0 Pr(X � y + r)f⇠(y)dy

Pr(X � ⇠)

=

R1
0 e

�µ(y+r)
f⇠(y)dy

Pr(X � ⇠)
=

e
�µr R1

0 e
�µy

f⇠(y)dy

Pr(X � ⇠)
= e

�µr
.

Poisson distribution

Definition A random variable X is Poisson distributed with parameter a if X is taken integer
values and has the following probability distribution:

P (X = n) =
a
n

n!
e
�a
, n = 0, 1, 2, . . .

Mean and Variance: Its mean and variance are given by

X = a, �
2
X = a.

Moment generating function
p(z) = E(zX) = e

a(z�1)
.
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4.4 Poisson Process

This process arose from the POTS (Plain Old Telephone Systems), which is used to describe the
arrival process.

Intuitive definition: A Poisson arrival process is equivalent to the following descriptive character-
ization:

• For any sufficiently small time interval, the probability that there is one arrival is proportional
to the length of the interval;

• The probability that there are more than one arrival in a sufficiently small interval can be
negligible;

• The number of arrivals are incrementally independent, i.e., the number of arrivals in one
interval is independent of the number of arrivals in other non-overlapping interval.

Formal Definition: A random process {A(t)|t � 0} is said to be a Poisson process with parameter
� if it takes nonnegative integers and satisfies the following properties:

(a) A(t) is a counting process that represents the total number of arrivals occurred from zero to
t, and for any t > s � 0, A(t)� A(s) equals the number of arrivals in the interval (s, t];

(b) A(t) is incrementally independent, i.e., A(b)�A(a) is independent of A(d)�A(c) whenever
a  b < c  d;

(c) For any t, ⌧ > 0, we have

P (A(t+ ⌧)� A(t) = n) =
(�⌧)n

n!
e
��⌧

, n = 0, 1, 2, . . .

i.e., A(t+ ⌧)� A(t) is Poisson distributed with parameter �⌧ .

Properties of the Poisson process A(t):

(1). Poisson process can be fully characterized by the interarrival time

⌧n = tn � tn�1

where tn denotes the n�th arrival time instant, i.e., A(t) is Poissonian iff ⌧n is exponentially
distributed with the same parameter �.
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(2). 8t � 0, � � 0, we have

P (A(t+ �)� A(t) = 0) = 1� �� + o(�)

P (A(t+ �)� A(t) = 1) = �� + o(�)

P (A(t+ �)� A(t) � 2) = o(�)

(3). If two or more independent Poisson processes A1(t), A2(t), . . . , Ak(t) are merged into a
single process A(t) = A1(t) +A2(t) + · · ·+Ak(t), then A(t) is also a Poisson process with
parameter equal to the sum of the parameters.

(4). Independent splitting also leads to Poisson processes, i.e., an arrival from a Poisson process
A(t) with parameter � will belong to the i arrival stream with probability pi where

Pk
i=1 pi =

1, then each individual arrival stream is also a Poisson process with parameter pi�.

(5). A counting incrementally independent process A(t) is a Poisson process iff its moment gen-
eration function is

p(z) = e
�t(z�1)

.

As a remark, we provide a less rigorous proof for the equivalence of the intuitive definition and
the formal definition below.

Proof: Formal definition can be easily proved by linear approximation to the exponential function.
Here we only need to show that the intuitive definition implies the formal definition. We only need
to prove item (c), i.e., the Poisson property. Let slice time interval [t, t + ⌧ ] into n equal interval
of length � = ⌧/n and ti = t + i�. When n is very large, each shorter interval would contain
either one arrival or none while the probability that there are more than arrivals can be negligible
comparing to the probability with zero arrival or one arrival. Thus, we have (the equal size in the
equation below indicates approximately equal when n is sufficiently small and xi = 0 or xi = 1)

Pr(A(t+ ⌧)� A(t) = k)

=
X

x1+···+xn=k

Pr (A(t2)� A(t1) = x1, A(t3)� t2) = x2, · · · , A(tn)� A(tn�1) = xn)

=
X

x1+···+xn=k

nY

i=1

Pr (A(ti)� A(ti�1) = xi)

=
X

x1+···+xn=k

nY

i=1

(��)xi(1� ��)(1� xi)

=
X

x1+···+xn=k

(��)x1+···+xn(1� ��)n�(x1+···+xn)
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=

0

@
X

x1+···+xn=k

1

1

A (��)k(1� ��)n�k

=

 
n

k

!

(��)k(1� ��)n�k

which can be easily shown, when taking � = ⌧/n into the equations, to converge to the Poisson
distribution item (c) by letting n ! 1.

4.5 Little’s Law

Little’s law (or Little’s Theorem) is a result expressing the average number of customers and the
average time!

• N(t) — # of customers in the system at time t

• ↵(t) — # of customers arriving in the interval (0, t]

• �(t) — # of customers departing in the interval (0, t]

• Ti — time spent in the system by the i�th customer in the system

Interpretation of time average: for any time function f(t), we have

1

t

Z 1

0
f(⌧)d⌧ ⇡

X
f(ti)

�ti

t

which is the time average!

Define

Nt =
1

t

Z t

0
N(⌧)d⌧

N = lim
t!1

Nt (average customer in the system)

�t =
↵(t)

t

� = lim
t!1

�t (average arrival rate)

Tt =

P↵(t)
i=0 Ti

↵(t)
T = lim

t!1
Tt (average system time)

Little’s Law
N = �T.
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Intuition:
N =

T

1/�
=

average system time per customer
average interarrival time

.

Proof: Let ↵(t) and �(t) denote the arrivals and departures in the time interval (0, t], respectively,

t1 t2 d1 d2

α

β

(t)

(t)

t

Figure 1: Little’s law

then N(t) = ↵(t)� �(t). Thus, from Figure 1, we have
Z t

0
N(⌧)d⌧ =

Z t

0
[↵(⌧)� �(⌧)]d⌧

=
Z t

0
↵(⌧)d⌧ �

Z t

0
�(⌧)d⌧

=
↵(t)X

i=0

Ti

hence,
1

t

Z t

0
N(⌧)d⌧ =

1

t

↵(t)X

i=0

Ti =
↵(t)

t
·
P↵(t)

i=0 Ti

↵(t)
.

Taking limit t ! 1 on both sides, we have

N = �T.
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Probabilistic form of Little’s Law

From the Law of Large Numbers (assuming all processes involved are Ergodic), or the follow-
ing principle from physics:

time average = ensemble average,

we obtain

lim
t!1

1

t

Z t

0
N(⌧)d⌧) = E[N(t)] = N(t) = N

lim
t!1

↵(t)

t
=

2

4 lim
t!1

P↵(t)
i=0 ⌧i

↵(t)

3

5
�1

=
1

E[⌧i]
=

1

⌧

lim
t!1

P↵(t)
i=0 Ti

↵(t)
= E[Ti] = T

hence, we have

N =
T

⌧
= �T , � = 1/⌧ .

Example: Packet arrivals with rate �, packet transmission time is X . Let W denote the waiting
time (not including the transmission time), the Little’s Law gives

NQ = �W,

where NQ denotes the average number of packets in the queue. The Little’s law states that the
relationship between the length of a time interval and the customers arriving in that time interval.
Similarly, the average number of packets under transmission will be

⇢ = �X,

which is also called the traffic intensity.

4.6 Birth-Death Processes

A B-D process is a special case of Markov chain, in which transitions only occur to the neighbors.

• Birth $ population increases only by “1”

• Death $ population decreases only by “1”



Fang: EEL6507–Queueing Theory 26

We only consider the continuous-time B-D processes with discrete state space. Examples: the
number of users in a computer network. The B-D processes are the most commonly used processes
in queueing systems.

Definition: A B-D process is a Markov chain in which the state transitions from any state are
permitted ONLY to its neighbors.

State space: S = {0, 1, 2, 3, . . .} — finite or infinite.

Transition rate matrix:

Q =

0

BBBB@

��0 �0 0 0 . . .

µ1 �(�1 + µ1) �1 0 0 . . .

0 µ2 �(�2 + µ2) �2 0 . . .

...
...

...
...

... . . .

1

CCCCA
.

State transition diagram:

0 1 2

λ λ λ λ

µµµµ

0 1 k-1 k

k+1k21

k-1 k k+1

Interpretation–birth-death

• �k—the birth rate when the population is k

• µk—the death rate when the population is k

Interpretation–flow

• �k—the flow rate from state k to state k + 1

• µk—the flow rate from state k to state k � 1

Interpretation–probabilistic: Let N(t) denote the population at time t.

• B1: (exactly 1 birth in (t, t+�t)|N(t) = k), P (B1) = �k�t+ o(�t)
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• D1: (exactly 1 death in (t, t+�t)|N(t) = k), P (D1) = µk�t+ o(�t)

• B2: (no birth in (t, t+�t)|N(t) = k), P (B2) = 1� �k�t+ o(�t)

• D2: (no death in (t, t+�t)|N(t) = k), P (D2) = 1� µk�t+ o(�t)

• Remarks: P (multiple births) = P (multiple deaths) = o(�t)

Probability distribution of population

Let N(t) be the B-D process, need to find

pk(t) = P (N(t) = k) = ⇡k(t),

i.e., the probability that the population at time t is k.

First Method

Recall d⇡(t)
dt = ⇡(t)Q, then ⇡(t) = ⇡(0)eQt. From this, we can obtain

dpk(t)

dt
= �(�k + µk)pk(t) + �k�1pk�1(t) + µk+1pk+1(t)

dp0(t)

dt
= ��0p0(t) + µ1p1(t)

Second Method

In order to find P (N(t) = k), we need to find what leads to N(t) = k. The population is in
state k at time interval (t, t+�t) if

(a) the population at time t is k and no birth in (t, t+�t)

(b) the population at time t is k � 1 and one birth in (t, t+�t)

(c) the population at time t is k + 1 and one death in (t, t+�t)

and transitions from all other events (from multiple births or from multiple deaths) are negligible
(i.e., o(�t)). Thus, we have

pk(t+�t) = P (N(t+�t) = k)

= P (N(t+�t) = k|N(t) = k � 1)P (N(t) = k � 1)

P (N(t+�t) = k|N(t) = k)P (N(t) = k)

P (N(t+�t) = k|N(t) = k + 1)P (N(t) = k + 1)

= pk�1,k(�t)pk�1(t) + pk,k(�t)pk(t) + pk+1,k(�t)pk+1(t)
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When k > 0, we have

pk(t+�t) = P (B1)pk�1(t) + P (B2 \D2)pk(t) + P (D1)pk+1(t)

[�k�1�t+ o(�t)]pk�1(t) + [1� (�k + µk)�t+ o(�t)]pk(t) + [µk+1�t+ o(�t)]pk+1(t)

hence
dpk(t)

dt
= �(�k + µk)pk(t) + �k�1pk�1(t) + µk+1pk+1(t).

Similarly, we can obtain the case when k = 0. In conclusion, we have

dpk(t)

dt
= �(�k + µk)pk(t) + �k�1pk�1(t) + µk+1pk+1(t)

dp0(t)

dt
= ��0p0(t) + µ1p1(t)

Flow interpretation

Flow rate into state k=�k�1pk�1(t) + µk+1pk+1(t)

Flow rate out of state k=(�k + µk)pk(t)

Hence, the effective probability transition rate is the difference between the flow-in rate minus the
flow-out rate.

Solutions

It is difficult to solve these differential-difference equations! A standard procedure for tackling
a difficult problem: attack simple cases first, start always with simple examples.

I). Pure birth case: µk = 0, �k = �, 8k

In this case, the equations are as follows:

dpk(t)

dt
= ��pk(t) + �pk�1(t), k � 1

dp0(t)

dt
= ��p0(t)

Initial condition: pk(0) = 1 when k = 0 and pk(0) = 0 when k 6= 0.

Solution: Solve the second equation for p0(t), which is given by p0(t) = e
��t. Then recursively

solve the equation, the final solution is

pk(t) =
(�t)k

k!
e
��t

.
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Yes, it is a Poisson process! Intuition?

II). Pure death process: �k = 0,µk = µ, 0 < k  N

dpk(t)

dt
= �µpk(t) + µpk+1(t), 0 < k < N

dpN(t)

dt
= �µpN(t)

dp0(t)

dt
= µp1(t)

The solution is given by

pk(t) =
(µt)N�k

(N � k)!
e
�µt

, 0 < k  N

dp0(t)

dt
=

µ(µt)N�1

(N � 1)!
e
�µt

III). B-D process: �k = �, µk = µ, k > 0, �0 = � µ0 = 0

dpk(t)

dt
= �(�+ µ)pk(t) + �pk�1(t) + µpk+1(t), k > 0

dp0(t)

dt
= ��p0(t) + µp1(t)

Facts:

• probability distribution $ moment generating function

• Differential equations $ Laplace transform operations

Idea: Find moment generating function and Laplace transform. From ODE: Laplace transform
can be used to find solution of ODE (Ordinary Differential Equations).

Procedure: Let

p(z, t) =
1X

k=0

pk(t)z
k
, p

⇤(z, s) =
Z 1

0
e
�st

p(z, t), p⇤0(s) =
Z 1

0
e
�st

p0(t)dt.

Multiplying z
k on both sides of the previous equations and summing up, we obtain

1X

k=1

dpk(t)

dt
z
k = �(�+ µ)

1X

k=1

pk(t)z
k + �

1X

k=1

pk�1(t)z
k + µ

1X

k=1

pk+1(t)z
k
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@[p(z, t)� p0(t)]

@t
= �(�+ µ)[p(z, t)� p0(t)] + �zp(z, t) +

µ

z
[p(z, t)� p0(t)� zp1(t)]

@p(z, t)

@t
= ��p(z, t)� µ[p(z, t)� p0(t)] + �zp(z, t) +

µ

z
[p(z, t)� p0(t)]

z
@p(z, t)

@t
= (1� z)[(µ� �z)p(z, t)� µp0(t)]

Taking Laplace transform non both sides, we obtain

p
⇤(z, s) =

zp(z, 0)� µ(1� z)p⇤0(s)

sz � (1� z)(µ� �z)
.

4.7 Birth-Death Processes in Equilibrium

For most system design and analysis, what we are interested in is the system characterization in
the steady-state (equilibrium, long-run). Let

pk = lim
t!1

pk(t), lim
t!1

dpk(t)

dt
= 0

where pk is called long-run probability of finding the system with population k, or the stationary
probability distribution.

From the B-D Chapman-Kolmogorov equations, we have

0 = �(�k + µk)pk + �k�1pk�1 + µk+1pk+1, k � 1

0 = ��0p0 + µ1p1

From which we obtain
(�k + µk)pk = �k�1pk�1 + µk+1pk=1

which states that the flow rate out of state k is equal to the flow rate into state k — the balance
equations!

From the balance equation, we have

pk+1 =
1

µk+1
[(�k + µk)pk � �k�1pk�1], p1 =

�0

µ1
p0,

which is a recursive formula. From this recursive formula, we could obtain the following:

pk =
�k�1

µk
pk�1,

i.e.,
�k�1pk�1 = µkpk,
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which is called the detailed balance equations! The flow is directionally balanced: any state is
memoryless, flow from one side will flow out on the other side. This property holds for many
practical systems!

From the normalization equation:
P1

k=0 pk = 1, we obtain

p0 =

"

1 +
1X

k=1

�k�1 · · ·�0

µk · · ·µ1

#�1

.

Therefore,

pk =

�k�1 · · ·�0
µk···µ1

1 +
P1

k=1
�k�1···�0

µk···µ1

, k � 0.

Conditions for Stability: the conditions for the existence of steady-state (equilibrium).

Define

S1 =
1X

k=0

 
k�1Y

i=0

�i

µi+1

!

, S2 =
1X

k=0

0

@ 1

�k
Qk�1

i=0
�i

µi+1

1

A .

• All states of B-D process are ergodic iff S1 < 1 and S2 = 1

• All states are recurrent null iff S1 = 1 and S2 = 1

• All states are transient iff S1 = 1 and S2 < 1

If all states are ergodic, then the B-D process is stable, i.e., there exists a stationary probability
distribution.

In particular, if there exists a � satisfying 0 < � < 1 such that �k
µk

 �, then the B-D is ergodic
(there is a mistake in Kleinrock’s book on this condition).

A special case: �k = � and µk = µ:

In this case, let ⇢ = �/µ. If ⇢ < 1, then the B-D process is ergodic, hence is stable, with

p0 = 1� ⇢, pk = (1� ⇢)⇢k.
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5 M/M/1 and its Variants

5.1 M/M/1

The M/M/1 queueing system consists of a single queueing station with single server, the arrivals
form a Poisson process while the service distribution is exponential.

Let N(t) denote the number of customers in the system at time t, A(t) denotes the total number
of arrivals from zero to time t. From the fact that A(t2)�A(t1), the total arrivals in any time interval
[t1, t2] follows Poisson distribution with parameter �(t2 � t1), we have

B1 : P (exactly one arrival in (t, t+�t)|N(t) = k)

= P (N(t+�t) = k + 1|N(t) = k) = P (A(t+�t)� A(t) = 1)

= (��t)e���t = ��t+ o(�t)

D1 : P (exactly one departure in (t, t+�t)|N(t) = k)

P (N(t+�t) = k � 1|N(t) = k) = P (r(t)  �t) (r(t) is residual service time)

= 1� e
�µ�t = µ�t+ o(�t)

B2 : P (no arrivals in (t, t+�t)|N(t) = k) = 1� ��t+ o(�t)

D2 : P (no departure in (t, t+�t]|N(t) = k) = 1� µ�t+ o(�t)

Thus, M/M/1 is a B-D process. Hence, we have

p0 = 1� ⇢

pk = (1� ⇢)⇢k, ⇢ =
�

µ

(1)

Moreover, the system is stable iff ⇢ < 1 or � < µ. We also have

N = lim
t!1

=
1X

n=0

npn =
⇢

1� ⇢
=

�

µ� �
.

From Little’s law, we obtain the system time

T =
N

�
=

⇢

�(1� ⇢)
=

1

µ� �
.

The waiting time is

W =
1

µ� �
� 1

µ
=

⇢

µ� �
.
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from Little’s law again, we obtain the average number of customers in the queue is given by

NQ = �W =
⇢
2

1� ⇢
.

Remark: ⇢ = 1�p0, where p0 is the probability of having no customers in the system. The average
number in service will be

Ns = 0⇥ P (no customer in service) + 1⇥ P (a customer in service) = P (server is busy) = ⇢

. Hence,

NQ = N �Ns =
�

µ� �
� ⇢ =

⇢
2

1� ⇢
.

5.2 M/M/m

An M/M/m queueing system is one in which arrivals form Poisson process with m exponential
servers.

Let N(t) denote the number of customers in the system at time t, then it can be shown that
N(t) is a B-D process with the following parameters

�k = �, k � 0

µk = kµ, 0  k  m

µk = mµ, k > m

When k  m, we have

pk = p0

k�1Y

i=0

�i

µi+1
= p0

k�1Y

i=0

�

(i+ 1)µ
= p0

 
�

µ

!k
1

k!
.

We can obtain the similar result for the case when k > m. In summary, we obtain

pk =

8
<

:
p0

(m⇢)k

k! , k  m

p0
mm(⇢)k

m! , k > m

where
⇢ =

�

mµ
.

From the normalization equation, we have

p0 =

"
m�1X

k=0

(m⇢)k

k!
+

 
(m⇢)m

m!

! 
1

1� ⇢

!#�1

.
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The probability that an arriving customer is forced to join the queue is given by

p(queueing) =
1X

k=m

pk.

Thus, we can obtain

PQ = P (queueing) =

 
(m⇢)m

m!

! 
1

1� ⇢

!

"
m�1X

k=0

(m⇢)k

k!
+

 
(m⇢)m

m!

! 
1

1� ⇢

!# .

This is called Erlang’s C formula.

Some other quantities are of interest to us. It is easy to derive the expected number of customers
waiting in queue (not in service) is given by

NQ =
1X

n=0

npn+m = PQ
⇢

1� ⇢
.

The waiting time is given by

W =
NQ

�
=

⇢PQ

�(1� ⇢)
.

Similarly, the average delay (system time) and the average number of customers in the system can
be found very easily by repeatedly applying Little’s Law.

5.3 M/M/1

This is the limiting case of M/M/m where m = 1. The detailed balance equation becomes

�pk�1 = (kµ)pn,

from which we obtain

pk = p0

 
�

µ

!k
1

k!

where

p0 =

2

41 +
1X

k=1

 
�

µ

!k
1

k!

3

5
�1

= e
��/µ

.

Thus,

pk =
(�/µ)k

k!
e
��/µ

, k = 0, 1, 2, . . . ,

which is a Poisson distribution! (Consider the number of people traveling in a city!) The average
number of customers in the system and the system time are given by

N =
�

µ
, T =

1

µ
.

Try to explain these results intuitively!
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5.4 M/M/m/m

This is a system where the arrivals form a Poisson process, there are m exponential server, with
no storage room (bufferless). This system is also called m�server loss system, which arises from
telephone systems: a new arrival will be blocked (clear from the system) if all m servers are busy.
The most important quantity is blocking probability.

The rate diagram can be drawn very easily. The detailed balance equations are

�pk�1 = (kµ)pk, k = 0, 1, 2, . . . ,m.

We can easily find

pk =
(�/µ)k/k!

Pm
i=0(�/µ)

i/i!
, k = 0, 1, 2, . . . ,m.

Thus, the blocking probability is given by

pm =
(�/µ)m/m!
Pm

i=0(�/µ)
i/i!

,

which is called Erlang B formula. In fact, this formula is also true for M/G/m/m system!

Exercise: Find the average number of customers in the system and the system time.

Homework # 2 (from textbook)

3.1, 3.5, 3.6, 3.8, 3.9, 3.10, 3.12, 3.17, 3.19, 3.21.
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6 M/G/1, G/M/1 and Priority Queues

6.1 M/G/1

This is the queueing system where the arrivals form a Poisson process and service distribution is
generally distributed. The most important quantity we are interested in is the average waiting time.

Let Xi denote the service time for the i�th customer, assume that {X1, X2, . . .} are iid (inde-
pendent and identically distributed). Let

X = E[X] =
1

µ

X2 = E[X2] = second moment of service time

W �� the average waiting time

T �� the average system time

⇢ = �E[X] =
�

µ
��traffic intensity

Wi = waiting time in queue of the i�th customer

Ri = Residual service time seen by the i�th customer

Xi = Service time of the i�th customer

Ni = # of customers found waiting in the queue by the i�th customer upon arrival

Base on such notation, we obtain

Wi = Ri +
i�1X

j=i�Ni

Xj.

By taking expectations and using the independence of the random variables Ni and Xi�1, . . . , Xi�Ni ,
we have

E[Wi] = E[Ri] + E

8
<

:E

8
<

:

i�1X

j=i�Ni

Xj

���Ni

9
=

;

9
=

; = E[Ri] +XE[Ni],

where we have used the Wald’s equation

E[
KX

j=1

Yi] = E[Yi]E[K].

Taking limit i ! 1 with some type of ergodicity assumption (such as � < µ), we obtain

W = R +
1

µ
NQ,
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where
R = mean residual time = lim

i!1
E[Ri].

By Little’s law, we have NQ = �W , thus we have

W = R +
1

µ
�W = R + ⇢W

hence
W =

R

1� ⇢
.

Thus, the problem is reduced to finding R. Two approaches are presented here, we want to show
that

R =
1

2
�X2.

Method 1: In this method, we want to use the following Residual Life Theorem (Kleinrock’s book
or any other queueing books): Let Yi denote iid random variables with distribution function F (y)

with average 1/⌘, let r denote the residual life in generic form, then the Residual Life Theorem
states that the pdf for r is given by ⌘[1� F (y)]. Thus,

E[r] =
Z 1

0
y[⌘(1� F (y))dy =

⌘

2
(1� F (y))

����
1

0
+

⌘

2

Z 1

0
y
2
dF (y) =

1

2
⌘E[Y 2].

Now applying this result to our case: replacing Yi by Xi, we have

Ri =

(
ri server is busy
0 server is idle

where ri is the residual life found by the i�th customer which has the stationary distribution of
generic form r. We thus obtain

R = E[Ri] = 0⇥ P (idle) + E[ri]P (busy) = ⇢E[r] = ⇢⇥ 1

2
µE[X2] =

�

2
X2.

Method 2 (graphical or Takacs’s technique) We can plot the residual service time r(⌧) (shown in
Figure 2): notice that when a new service of the customer X begins, r(⌧) starts at X and decays
linearly for X time units (with slope �1). Consider a time for which r(t) = 0. The time average
of r(t) in the interval [0, t] is

1

t

Z t

0
r(⌧)d⌧ =

1

t

M(t)X

i=1

1

2
X

2
i =

1

t
the area under curve r(⌧)

1

2

M(t)

t

PM(t)
i=1 X

2
i

M(t)
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r(t)

Time tX

X1

X1 X2 M(t)

Figure 2: Derivation of the average residual service time

where M(t) is the number of service completions within [0, t]. Assuming all limits exist, taking
limit t ! 1, we obtain

R =
1

t

Z t

0
r(⌧)d⌧ =

1

2
lim
t!1

M(t)

t
lim
t!1

PM(t)
i=1 X

2
i

M(t)
=

1

2
�X2.

Final results: We finally arrive at

W =
�X2

2(1� ⇢)
.

This is called Pollaczek-Khinchin formula or simply P-K formula.

Using Little’s law, we have the following results

T = X +
�X2

2(1� ⇢)

NQ =
�
2
X2

2(1� ⇢)

N = ⇢+
�
2
X2

2(1� ⇢)

Remark: Indeed, for M/G/1 queue, all average values for the queueing system depend on the
second moment statistics! Thus, using M/M/1 approximation may NOT be a good idea.
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Special cases:

W =
⇢

µ(1� ⇢)
(M/M/1)

W =
⇢

2µ(1� ⇢)
(M/D/1)

Exercises:

(a). For M/D/1 system, derive the formulae for the average number of customers in the system,
in the queue and the average system time.

(b). Show that the M/D/1 gives the minimum waiting time among all M/G/1 queues given the
same arrival rate and service rate.

6.2 More General Results for M/G/1

What if I want to find information about the queueing delay? More rigorous machinery is needed.
The following material is from Kleinrock’s book.

6.2.1 Imbedded Markov Chain

To analyze this queue, we need to find the imbedded Markov chain. For M/G/1, the number of
customers in the queue, say, N(t) is no longer a Markov chain because the current state N(t) = k is
not enough to characterize the future: since the service time is no longer memoryless, the customer
in service is “different” from those in queue in terms of service time distribution from now to the
ending. However, to make them the same, we could observe the number of customers observed in
some special instants. For example, in this case, at the end of service completion (the departure
instants), the observed number of customers in the system (excluding the finished customers) will
all have the same service times statistically, thus it could be shown that such “sampled” sequence
will form a Markov chain from which we could derive all interested quantity. This leads to the
so-called imbedded Markov chain. If we define the following quantities,

pk = lim
t!1

P (N(t) = k) = P [there are k customers in the system at time t)

rk = lim
t!1

P [arrival at time t finds k customers in the system)

dk = lim
t!1

P [departure at time t finds k customers in the system)

it can be shown that for M/G/1, pk = rk = dk.
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6.2.2 Transition Probabilities

Define

Cn = the nth customer to enter the system

tn = the arrival time instant of Cn

⌧n = tn � tn�1

Xn = service time for Cn

qn = number of customers left behind by departure of Cn from service

vn = number of customers arriving during the service of Cn

It can be easily shown that {qn} is a Markov chain and we can find the probability distri-
bution of this chain in order to find all other quantities. Intuitively speaking, this Markov chain
is homogeneous, and thus we just offer the stationary distribution for illustration purpose. Let
pij = P (qn+1 = j|qn = i), and ↵k = P (vn+1 = k). Since we only have one single server, thus the
state decrements at most 1. However, since we can have multiple arrivals during a service time,
and thus the transition to higher states are possible. It can be easily found that the transition matrix
is given by 0

BBBBBBBBBB@

↵0 ↵1 ↵2 ↵3 · · ·
↵0 ↵1 ↵2 ↵3 · · ·
0 ↵0 ↵1 ↵2 · · ·
0 0 ↵0 ↵1 · · ·
0 0 0 ↵0 · · ·
· · · · · · ·
· · · · · · ·

1

CCCCCCCCCCA

The parameter ↵k can be easily computed as follows: Let b(x) denote the probability density
function (pdf) for the service time, then we have

↵k = P (vn+1 = k) =
Z 1

0
P (vn+1 = k|Xn+1 = x)b(x)dx

=
Z 1

0

(�x)k

k!
e
��x

b(x)dx

If we let V (z) denote the moment generating function for vk and let b⇤(s) denote the Laplace
transform for b(x), then we can easily obtain

V (z) =
1X

k=0

P (vn+1 = k)zk =
Z 1

0
e
��x

 1X

k=0

(�xz)k

k!

!

b(x)dx

=
Z 1

0
e
��x

e
�xz

b(x)dx =
Z 1

0
e
�(���z)x

b(x)dx = b
⇤(�� �z). (2)
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6.2.3 Average Queue Length

In fact, there is a close relationship between the queue length and number of arrivals during service
time. It is easy to verify that when qn > 0, the customer just finished service is Cn+1, while qn

includes this one when Cn departed. Therefore, when Cn+1 completes the service and counts the
number of customers excluding itself would be (qn � 1) plus the number of new arrivals during its
service, and thus qn+1 = qn � 1 + vn+1. When qn = 0, only when Cn+1 arrives and can receive
immediately receiving service. When it leaves, only the number of new arrivals during its service
is observed, and thus qn+1 = vn+1. Define

�k =

(
1 k > 0
0 k  0

Then, we obtain the fundamental equation for queue length

qn+1 = qn ��qn + vn+1 (3)

It is easy to obtain the following (the overline denotes the expectation operator as before)

�qn =
1X

k=0

�kP (qn = k) =
1X

k=1

P (qn = k) = P (qn > 0) = P (busy system) = ⇢

where ⇢ = �X .

By taking average on both sides of equation (3) and letting ṽ denote the generic form (stationary
version) of vn, we obtain

ṽ = �qn = ⇢.

Now, squaring both sides of equation (refeq:ql) and also noticing that (�qn)
2 = �qn and

qn�qn = qn, we obtain

q
2
n+1 = q

2
n +�2

qn + v
2
n+1 � 2qn�qn + 2qnvn+1 � 2�qnvn+1

i.e.,
q
2
n+1 = q

2
n +�qn + v

2
n+1 � 2qn + 2qnvn+1 � 2�qnvn+1

By taking the expectation on both sides, we obtain

q
2
n+1 = q2n +�qn + v

2
n+1 � 2qn + 2qnvn+1 � 2�qnvn+1

By noticing that qn and vn+1 are independent, we obtain

q
2
n+1 = q2n +�qn + v

2
n+1 � 2qn + 2qn · vn+1 � 2�qn · vn+1
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Letting n go to 1, we obtain

0 = �q̃ + ṽ2 � 2q̃ + 2q̃ · ṽ � 2�q̃ · ṽ

or,
0 = ⇢+ ṽ2 � 2q̃ + 2q̃ · ṽ � 2⇢ṽ

Thus, we have

q̃ = ⇢+
ṽ2 � ⇢

2(1� ⇢)
.

From equation (2) and the relationship between the moments and moment generating function/Laplace
transform, we can easily obtain

V
00(1) = ṽ2 � ṽ = V

00(z)|z=1 = b
⇤00(�� �z)|z=1 = �

2
b
⇤00(0) = �

2
X2.

Thus, we finally obtain the P-K equation for queue length as

q̃ = ⇢+
�
2
X2

2(1� ⇢)
(4)

Let T and W denote the average time and average waiting time as before. From Little’s Law, we
can easily obtain

T =
q̃

�
=

1

µ
+

�X2

2(1� ⇢)

W = T � 1/µ =
�X2

2(1� ⇢)

which offers another derivation of P-K formula for average waiting time.

6.2.4 Distribution of the Number of Customers in the System

In fact, we could do better than that from the fundamental equation for queue length. Let Qn(z)

denote the moment generating function of qn, and Q(z) denote the moment generating function of
the generic form (i.e., the limiting case, limn!1 Qn(z) = Q(z)). From equation (3), we obtain
(noting the independence of vn+1 and past history)

Qn+1(z) = zqn+1 = zqn��qn+vn+1 = zqn��qn · zvn+1 = V (z)zqn��qn (5)

Moreover, we have

zqn��qn =
1X

k=0

P (qn = k)zk��k

= P (qn = 0) +
1X

k=1

P (qn = k)zk�1 = P (qn = 0) +
1

z

1X

k=1

P (qn = k)zk

= P (qn = 0) +
1

z
[Qn(z)� P (qn = 0)]
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Thus, we have

Qn+1(z) = V (z)

 

P (qn = 0) +
Qn(z)� P (qn = 0)

z

!

.

Letting n ! 1, we obtain

Q(z) = V (z)

 

P (q̃ = 0) +
Q(z)� P (q̃ = 0)

z

!

.

By noticing that P (q̃ = 0) = 1� ⇢, we have

Q(z) = V (z)
(1� ⇢)(1� 1/z)

1� V (z)/z
.

Taking (2) into this equation, we finally obtain

Q(z) = b
⇤(�� �z)

(1� ⇢)(1� z)

b⇤(�� �z)� z
(6)

which is called P-K transformation formula.

As the special case, M/M/1 has b⇤(s) = µ/(s+ µ). Taking this into (6), we obtain

Q(z) =
1� ⇢

1� ⇢z
.

From this we can easily obtain that P (q̃ = k) = (1� ⇢)⇢k.

6.2.5 Distribution of the Waiting Time

We can study this by first studying the system time. Let sn denote the total time the customer Cn

spent in the system, then we have sn = wn + Xn. If we examine the analogy between the vk+1

and Xn+1, we can think that during sn time period, there are qn arrivals by recalling that qn is
the number of customers left behind when nth customer departs (by equating qn to vk+1 and sn

to Xn+1. With this argument, we can obtain equation similar to (2). If we use s
⇤(s) denote the

Laplace transform of the pdf of the generic service time, we have

Q(z) = s
⇤(�� �z) = b

⇤(�� �z)
(1� ⇢)(1� z)

b⇤(�� �z)� z
(7)

From this we can easily obtain

s
⇤(s) = b

⇤(s)
s(1� ⇢)

s� �+ �b⇤(s)
(8)

Let w⇤(s) denote the Laplace transform of the pdf of the generic waiting time for the customer Cn.
Since Xn is independent of the past history (e.g., wn), we have

s ⇤ (s) = e�ssn = e�swne�sXn = e�swn · e�sXn = w
⇤(s)b⇤(s).
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Thus, we obtain

w
⇤(s) =

s
⇤(s)

b⇤(s)
=

s(1� ⇢)

s� �+ �b⇤(s)
(9)

If we let
b̂
⇤(s) =

1� b
⇤(s)

sX
,

then we obtain a nicer result

w
⇤(s) =

1� ⇢

1� ⇢b̂⇤(s)
= (1� ⇢)

1X

k=0

⇢
k[b̂⇤(s)]k (10)

If we let b̂(x) denote the pdf corresponding to b̂
⇤(s) and b̂

(k)(x) denote the self-convolution of b̂(x)
k times, then the pdf of waiting time is given by

w(x) =
1X

k=0

(1� ⇢)⇢kb̂(k)(x) (11)

For M/M/1, we can easily obtain

s(x) = µ(1� ⇢)e�µ(1�⇢)x
, x � 0

w(x) = (1� ⇢)�(x) + �(1� ⇢)e�µ(1�⇢)x
, x � 0

where �(x) is an impulse function (Dirac function).

6.3 G/M/1

In order to give a clear presentation, we may have to introduce some additional notation and new
techniques, due to the time limitation, we will not give the details in this course. However, the
following is the result. The imbedded Markov chain is the “sampled” sequence at the arrival time
instants, i.e., the number of customers in the system upon the arrival time instants. Detailed can be
found in Kleinrock’s book.

Let pk denote the steady-state probability distribution for G/M/1, let A(t) denote the proba-
bility density function of the interarrival time with the Laplace transform A

⇤(s), let 1/µ denote the
average service time, then we have

pk = (1� �)�k
, k = 0, 1, 2, . . .

where � is the solution of
� = A

⇤(µ(1� �))

in the range 0 < � < 1.

With this distribution, we could find all other quantities of interest. Please find them as an
exercise.
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6.4 G/G/1

No exact analytical results are available up to now. However, an upper bound for the average
waiting time can be obtained.

Assume that the inter-arrival time and service times are independent! (Very important assump-
tion). Let

�
2
a = variance of the interarrival times

�
2
b = variance of the service times

1/� = average interarrival time

1/µ = average service time

⇢ = �/µ� traffic intensity factor

Wk = waiting time of the kth customer

Xk = service time of the kth customer

⌧k+1 = interarrival time between the kth and k + 1th customer

Then we have the following obvious relationship

Wk+1 = max{0,Wk +Xk � ⌧k} = (Wk +Xk � ⌧k)
+

We use the following notation:

Y
+ = max{0, Y }, Y � = �min{0, Y } = max{0,�Y }, Y = E(Y ), �2

Y = E[Y 2 � Ȳ
2].

We have
Y = Y

+ � Y
�
, Y

+
Y

� = 0

from which we obtain

Y = Y + � Y �, �2
Y = �

2
Y + + �

2
Y � + 2Y + · Y �.

Let
Vk = Xk � ⌧k, Ik = (Wk + Vk)

�
,

we have
Wk+1 = (Wk + Vk)

+
.

Notice that Ik is the length of the idle period between the arrival of the kth customer and the arrival
of the (k + 1)th customer.
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Thus, we have

�
2
Wk+Vk

= �
2
(Wk+Vk)+

+ �
2
(Wk+Vk)�

+ 2(Wk + Vk)+ · (Wk + Vk)�

= �
2
Wk+1

+ �
2
Ik
+ 2Wk+1 · Ik

However, using the independence of Wk and Vk and the independence of Xk and ⌧k, we also have

�
2
(Wk+Vk)

= �
2
Wk

+ �
2
Vk

= �
2
Wk

+ �
2
a + �

2
b

Combining the above two equations, we obtain

�
2
Wk

+ �
2
a + �

2
b = �

2
Wk+1

+ �
2
Ik
+ 2Wk+1 · Ik.

Letting k ! 1 and using

Wk ! W, �
2
Wk

! �
2
W , I

2
k ! I, �

2
Ik

! �
2
I ,

we obtain
W =

�
2
a + �

2
b

2I
� �

2
I

2I
.

We notice that the idle period between consecutive arrivals will be the time accumulation of times
that the server is idle, while the server is idle with probability 1� ⇢, thus we obtain

I = (1� ⇢) ⇤ (1/�).

Hence
W =

�(�2
a + �

2
b )

2(1� ⇢)
� ��

2
I

2(1� ⇢)
,

from which we finally arrive at

W  �(�2
a + �

2
b )

2(1� ⇢)
.

As an exercise, compare the upper bound with the real value for W in M/G/1, M/M/1 and
M/D/1.

6.5 Priority Queues

Prioritized queues become more important than ever nowadays, in particular in multimedia net-
works. We will concentrate on the non-preemptive priority, although preemptive queues (such as
in CDPD or cognitive radios) are also important. We limit our discussion for M/G/1 systems.
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Let �k denote the arrival rate for the class k customers among n different priority classes,
assume that the class k customers have service time Xk of general distribution, some independence
assumptions are used.

Let

N
k
Q = average number of customers in the queue for priority k

Wk = average queueing time for priority k

⇢k =
�k

µk
= traffic intensity for priority k

R = mean residual service time

Assume that the overall system traffic intensity is less than unity:

⇢ =
nX

i=1

⇢i < 1.

The Intuitive argument: For the highest priority, we have

W1 = R +
1

µ1
N

1
Q

which indicates that the waiting time for class 1 should be equal to the average residual service
time and the time to drain all waiting customers (here we use µ1 rather than �1 !!)

From Little’s law, we have
N

1
Q = �1W1,

thus we have
W1 = R +

1

µ1
(�1W1) = R + ⇢1W1,

hence
W1 =

R

1� ⇢1
.

Similarly, for the class 2 customers, we have

W2 = R +
1

µ1
N

1
Q +

1

µ2
N

2
Q +

1

µ1
(�1W2) = R + ⇢1W1 + ⇢2W2 + ⇢1W2

which can be interpreted as follows: the waiting time for a class 2 is equal to the residual service
time, plus the time for all waiting class 1 and 2 customers to finish, plus the time for class 1

customers to arrive during the waiting time! Thus, we obtain

W2 =
R + �1W1

1� ⇢1 � ⇢2
=

R

(1� ⇢1)(1� ⇢1 � ⇢2)
.
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When k > 2, we can combine all customers into one class with traffic intensity ⇢̃1 = ⇢1 + ⇢2 +

· · ·+ ⇢k�1, applying the case when k = 2, we obtain

Wk =
R

(1� ⇢̃1)(1� ⇢̃1 � ⇢k)
=

R

(1� ⇢1 � · · ·� ⇢k�1)(1� ⇢1 � · · ·� ⇢k)
.

We can also show using a similar argument as for k = 2, a class k customer has to wait for
all higher priority customers in the queue and arriving during the waiting time this customer in
waiting, thus once again, we obtain (by noticing that N i

Q = �iWi)

Wk = R +
k�1X

i=1

1

µi
N

i
Q +

1

µk
N

k
Q +

k�1X

i=1

1

µi
(�iW2) = R +

k�1X

i=1

⇢iWi + (
kX

i=1

⇢i)W2

from which we obtain

Wk =
R

(1� ⇢1 � · · ·� ⇢k�1)(1� ⇢1 � · · ·� ⇢k)
.

Here we use the identity

1+
⇢1

1� ⇢1
+

⇢2

(1� ⇢1)(1� ⇢1 � ⇢2)
+· · ·+ ⇢k

(1� ⇢1 � · · ·� ⇢k�1)(1� ⇢1 � · · ·� ⇢k)
=

1

1� ⇢1 � · · ·� ⇢k
.

Thus, the problem is reduced to finding R.

Method 1 for finding R: Let r denote the residual service time in generic form, let � =
Pn

i=1 �i,
then we have

R = E[r] =
nX

i=1

E[r|class i customer in service]P (class i customer in service)

=
nX

i=1

✓
1

2
�X

2
i

◆ 
�i

�

!

=
1

2

nX

i=1

�iX
2
i

Method 2 for finding R: Let Mi(t) be the number of class i customers arriving during [0, t] and
Xi,j denote the service time for the j�th customer belonging to class i, we have

R = lim
t!1

1

t

nX

i=1

Mi(t)X

j=1

1

2
X

2
i,j

=
nX

i=1

lim
t!1

 
Mi(t)

t

!0

@
PMi(t)

j=1
1
2X

2
i,j

Mi(t)

1

A

=
1

2

nX

i=1

�iX
2
i .

In sum, we finally obtain

Wk =

Pn
i=1 �iX

2
i

2(1� ⇢1 � · · ·� ⇢k�1)(1� ⇢1 � · · ·� ⇢k)
.
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Homework #3

3.30, 3.31, 3.36, 3.37
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7 Time-Reversibility and Multidimensional Markov Chain

7.1 Time-Reversibility: Burke’s Theorem

Birth-death processes have been used for all studies in M/M/1, M/M/m, M/M/1, and M/M/m/m,
the so-called detailed balance equations are given by

pjpj(j+1) = pj+1p(j+1)j (discrete-time MC)

pjqj(j+1) = pj+1q(j+1)j (continuous-time MC)

Time-reversibility is the generalized property of the detailed balance equations: a process will
be the same no matter whether we look forward or backward in time! To demonstrate, consider
an irreducible, discrete-time Markov chain {Xn} having transition probabilities pij and stationary
distribution {pj}: p[j = Pr{Xn = j} in steady-state.

Suppose that we look at the MC backward in time, · · · , Xn, Xn�1, · · ·, then the future in the
forward chain becomes the past in the backward chain, thus we have

Pr(Xm = j|Xm+1 = i, Xm+2 = i2, . . . , Xm+k = ik)

=
Pr(Xm = j,Xm+1 = i, Xm+2 = i2, . . . , Xm+k = ik)

Pr(Xm+1 = i, Xm+2 = i2, . . . , Xm+k = ik)

=
Pr(Xm = j,Xm+1 = i) Pr(Xm+2 = i2, . . . , Xm+k = ik|Xm = j,Xm+1 = i)

Pr(Xm+1 = i) Pr(Xm+2 = i2, . . . , Xm+k = ik|Xm+1 = i)

=
Pr(Xm = j,Xm+1 = i)

Pr(Xm+1 = i)
=

Pr(Xm = j) Pr(Xm+1 = i|Xm = j)

Pr(Xm+1 = i)
=

pjpji

pi

This implies that the backward process is also a Markov process with transition probability

p
⇤
ij = Pr(Xm = j|Xm+1 = i) =

pjpji

pi
.

Definition: If p⇤ij = pij , i.e., the transition probabilities of the forward and the reserved chain are
identical, then the chain is called time reversible.

Properties: For irreducible, aperiodic and time-reversible MC, we have

(1). The reversed MC is also irreducible, aperiodic and has the same stationary distribution as
the forward MC;
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(2). If we can find positive numbers pi satisfying
P1

i=0 pi = 1 such that

p
⇤
ij =

pjpji

pi
, i, j � 0

forms a probability transition matrix, i.e.,
P1

j=0 p
⇤
ij = 1 for i � 0, then {pi} is the stationary

distribution and p
⇤
ij are the transition probabilities of the reversed MC. Important observa-

tion: This property holds regardless of whether the chain is reversible or not!

(3). A chain is time reversible if and only if the detailed balance equations hold: pipij = pjpji for
any i, j � 0. This implies that B-D processes, M/M/1, M/M/1 are all time-reversible!

Continuous-time MC

For continuous-time MC X(t), the process X(�t) is the reversed chain.

Theorem: For the continuous-time MC having transition rates qij and stationary distribution pj >

0 for j � 0, we have

(1) The reversed chain X(�t) is also a continuous-time MC with the same stationary distribution
and with the transition rates given by

q
⇤
ij =

pjqji

pi
, i, j � 0

(2) If we find positive numbers pj with
P1

i=0 pi = 1 such that

q
⇤
ij =

pjqji

pi
, i, j � 0

and satisfy
1X

j=0

qij =
1X

j=0

q
⇤
ij (total balance equation)

then {pi} is the stationary distribution of the both forward and backward chains, and q
⇤
ij are

the transition rates of the reversed chain.

(3) The forward chain is time-reversible if and only if the detailed balance equations hold:

piqij = pjqji, i, j � 0

Remark: Total balance equations are

pi

1X

j=0

qij =
1X

j=0

pjpji, i � 0.
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Burke’s Theorem: Consider an M/M/1, M/M/1 or M/M/m system with arrival rate �. Sup-
pose that the system starts in steady-state (i.e., the initial probability distribution is the stationary
distribution), then the following statements are true:

(a). The departure process is also Poisson with rate �;

(b). At each time t, the number of customers in the system is independent of the sequence of
departure times prior to t.

Burke’s Theorem (1956): In an M/G/1 system, the departure process is Poisson if and only if
the service time is exponentially distributed. I.e., M/M/1 is the ONLY M/G/1 that the departure
process is Poisson!

Example: Tandem queues (two queue systems in tandem). Assume that the arrival process and the
service times are all independent. If we assume that the arrival process is Poisson and all service
times for both queues are exponentially distributed, then from Burke’s Theorem, the departure
process of the first queue is also Poisson, hence the second queue in tandem is also M/M/1, hence
this tandem is in fact a tandem of M/M/1 queues. Assuming that the arrival rate is �, and the
average service times are 1/µ1 and 1/µ2 respectively. Let ⇢1 = �/µ1 and ⇢2 = �/µ2 and p(n1, n2)

denote the probability distribution that there are n1 customers in the first queue and n2 customers
in the second queue. Then, we have

p(n1, n2) = ⇢
n1
1 (1� ⇢1)⇢

n2
2 (1� ⇢2).

This is a network of queues!

7.2 Multidimensional Markov Chain (MMC)

MMC arises in many situations:

• multiple classes of customers

• multiple priority classes

• multimedia networks

• QoS service networks
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Consider a queueing system with K customer types, the process–# of customers in the system
at time t, N(t)– can only be represented as

N(t) = (n1(t), n2(t), . . . , nK(t))

where ni(t) is the number of customers of type i at time t.

Example 1: Two traffic streams of different arrival rates merge into one stream for service, if the
average service times for two traffic streams are the same, then we can treat all customers the same
with the aggregated rate (the sum of the rates of the two), the process will be the total number
of customers in the system. However, if two streams have different average service times, then
the total number of customers in the system will not tell the whole story (or does not convey the
whole information), because customers from different streams will demand different services! The
only way is to use the two dimensional process to accurately capture the dynamic of the queueing
system.

Example 2: A cellular system: each cell can be modeled as a queueing system, two traffic streams
will request for services, the new calls and handoff calls, usually the handoff call will need pref-
erential treatment, the channel holding times (service times) will be different fro new calls and
handoff calls.

Let (n1, n2, . . . , nK) denote a state, p(n1, n2, . . . , nK) denote the steady-state probability dis-
tribution. Let

n(j+) = (n1, n2, . . . , nj�1, nj + 1, nj+1, . . . , nK)

n(j�) = (n1, n2, . . . , nj�1, nj � 1, nj+1, . . . , nK)

Similar to the case for one-dimensional MC, we only need to observe the state transition by one
unit. This leads to the B-D process:

n �! n(j+) : one type-j customer arrives

n �! n(j�) : one type-j customer departs

If we could find p(n) = p(n1, n2, . . . , nK), which satisfies the “detailed balance” equations:

�jp(n1, n2, . . . , nj�1, nj, nj+1, . . . , nK) = µjp(n1, n2, . . . , nj�1, nj + 1, nj+1, . . . , nK)

then p(n) will be the stationary distribution. If

p(n1, n2, . . . , nj�1, nj, nj+1, . . . , nK) = p1(n1)p2(n2) · · · pK(nk),
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then the queueing system is said to possess product form.

Truncation of independent multiple single-class systems

Consider K independent M/M/1 queues: state n = (n1, n2, . . . , nK), for each queue i, the
distribution is

pi(ni) = ⇢
ni
i (1� ⇢i), ⇢i =

�i

µi

Obviously, the joint distribution

p(n) = p1(n1)p2(n2) · · · pK(nK) =
1

G
⇢
n1
1 ⇢

n2
2 · · · ⇢nK

K

where G is the normalization factor. One easy verification is to check the detailed balance equa-
tions although we could use the independence to obtain it directly.

Truncation: a truncation of a system is a Markov chain having the same transition diagram with the
only difference that some states are eliminated, while transitions between all other pairs of states
with the same transition probabilities/rates.

Let S denote the set of states in the truncated queue system, a wild guess for the probability
distribution would be

p(n) =
1

G
⇢
n1
1 ⇢

n2
2 · · · ⇢nK

K

where G is the normalization factor over the state space of this truncated systems, i.e.,

G =
X

(n1,...,nK)2S
⇢
n1
1 ⇢

n2
2 · · · ⇢nK

K .

Remark: This is very similar to the conditional probability argument.

Proof: Need to show that detailed balance equations

�jp(n1, n2, . . . , nj�1, nj, nj+1, . . . , nK) = µjp(n1, n2, . . . , nj�1, nj + 1, nj+1, . . . , nK).

In fact,

LHS = �j
⇢
n1
1 · · · ⇢nj

j · · · ⇢nK
K

G

= µj⇢j
⇢
n1
1 · · · ⇢nj

j · · · ⇢nK
K

G

= µj
⇢
n1
1 · · · ⇢nj+1

j · · · ⇢nK
K

G

= µjp(n(j+)) = RHS

Remarks:
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(a). In the above proof, we must have n(j+) 2 S, otherwise, it will lead us to the boundary
condition.

(b). The difficulty: computation of G.

(c). Apply truncations to other cases such as M/M/m, M/M/1, M/M/m/m as well.

Illustrative example (example 3.13)

Two session classes with preferential treatment for one class in a circuit switching system.

Consider a transmission line consisting of m independent circuits of equal capacity. Assuming
that the two classes of sessions have arrival rates �1 and �2 and service rates µ1 and µ2, respectively.
There is a limit K < m on the # of circuits used by sessions of second type, thus there are at least
(m-k) circuits to be used by the sessions of the first type. Interesting quantities in this system are
the blocking probabilities:

• first type: blocked when all circuits are busy

• second type: blocked when there are K sessions of second type in the system

The Markov process N(t) = (n1(t), n2(t)) for this system is two-dimensional MC, where ni(t) is
the number of customers of type i in the system at time t. It is easy to draw the state transition
diagram (see Figure 3). The probability distribution is given by

0,0

0,K 1,K i,K m-K, K

0,K-1 1,K-1 i,K-1 m-K,K-1 m-K+1,K-1

1,0 i,0 m-K,0 m-K+1,0 m,0

Figure 3: Multidimensional MC transition diagram
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p(n1, n2) =

⇢
n1
1
n1!

· ⇢
n2
2
n2!

G

where
G =

X

(n1,n2)2S

⇢
n1
1

n1!
· ⇢

n2
2

n2!
.

Verification: Check the detailed balance equations:

�1p(n1, n2) = (n1 + 1)µ1p(n1 + 1, n2)

�2p(n1, n2) = (n2 + 1)µ2p(n1, n2 + 1)

In fact, we have

�1p(n1, n2) = �1

⇢
n1
1
n1!

· ⇢
n2
2
n2!

G

= �1 ·
n1 + 1

⇢1

⇢
n1+1
1

(n1+1)! ·
⇢
n2
2
n2!

G
= (n1 + 1)µ1p(n1 + 1, n2)

The other equation can be proved similarly.

The normalization factor is given by

G =
X

(n1,n2)2S

⇢
n1
1

n1!
· ⇢

n2
2

n2!

=
m�KX

n1=0

⇢
n1
1

n1!

KX

n2=0

⇢
n2
2

n2!
+

mX

n1=m�K+1

m�n1X

n2=0

⇢
n1
1

n1!
· ⇢

n2
2

n2!

=

0

@
m�KX

n1=0

⇢
n1
1

n1!

1

A

0

@
KX

n2=0

⇢
n2
2

n2!

1

A+
mX

n1=m�K+1

m�n1X

n2=0

⇢
n1
1

n1!
· ⇢

n2
2

n2!

Let Pb1 and Pb2 denote the blocking probabilities for the sessions of the first type and second
type, respectively. Then we can obtain

Pb1 =
X

(n1,n2) is on diagonal
p(n1, n2) =

X

n1+n2=m

p(n1, n2)

=
1

G

X

n1=m�K

⇢
n1
1

n1!
· ⇢

m�n1
2

(m� n1)!

Pb1 =
X

(n1,n2) is on outer boundary
p(n1, n2) =

X

n1+n2=m or n2=K

p(n1, n2)

=
1

G

2

4

0

@
m�KX

n1=0

⇢
n1
1

n1!

1

A ⇢
K
2

K!
+

mX

n1=m�K+1

⇢
n1
1

n1!
· ⇢

m�n1
2

(m� n1)!

3

5

Remarks:
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• There are mistakes in the textbook (on page 185).

• This result can be used in wireless networks.
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8 Networks of Queues

Motivation: a few queues must be considered together because they are “related” or “intercon-
nected”: one’s departures form another’s arrivals. For example, a tandem of queues (in assembly
lines), a cellular system of multiple cells, LANs on campus, · · ·

8.1 Open Queueing Networks (OQN)

Consider a network of K FCFS, single-server queues. Assume that

(1) external arrivals are Poisson with rate ri;

(2)
P

i ri > 0;

(3) pij is the routing probability from node i to node j;

(4) a job leaves the network from node i with probability

1�
KX

j=1

pij;

(5) each job/customer will eventually exit the system;

(6) service time in any queue is exponentially distributed.

Let �i denote the total arrival rate of jobs at queue i, then

�j = rj +
KX

i=1

�ipij, j = 1, 2, . . . , K (12)

Let

� =

0

BBBB@

�1

�2
...

�K

1

CCCCA
, r =

0

BBBB@

r1

r2
...
rK

1

CCCCA
, P =

0

BBBB@

p11 p21 · · · pK1

p12 p22 · · · pK2
...

... . . . ...
p1K p2K · · · pKK

1

CCCCA
, I =

0

BBB@

1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

1

CCCA

Then equations (12) becomes (I � P )� = r. So that it has a unique solution iff I � P is non-
singular, iff 1 is not an eigenvalue of P , iff limm!1 P

m = 0, which is implied by Assumption (5):
for any i1, there exists i with 1�PK

j=1 pij > 0 such that there exist i2, i3, . . . , ik satisfying

pi1i2 > 0, pi2i3 > 0, . . . , piki > 0.
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Let ⇢j = �j/µj , j = 1, 2, . . . , K, assuming that ⇢j < 1.

Multi-dimensional Markov Chain (page 180)

State: n = (n1, n2, . . . , nK)

Problem: Find p(n1, n2, . . . , nK)

Notations:

n(j+) = (n1, . . . , nj�1, nj + 1, nj+1, . . . , nK)

n(j�) = (n1, . . . , nj�1, nj � 1, nj+1, . . . , nK)

n(i+, j�) = (n1, . . . , ni + 1, . . . , nj � 1, . . . , nK)

Possible transitions (events)

• external arrival: qnn(j+) = rj

• external departure: qnn(j�) = µj(1�
PK

i=1 pji)

• internal transition: qnn(i+,j�) = µjpji

Idea: Due to the randomization idea (routing probability formulation), each queue may be con-
sidered “independent”! If we regard all queues are “independent”, then the probability at state
n = (n1, n2, . . . , nK) should be given by

p(n1, n2, . . . , nK) = p1(n1)p2(n2) · · · pK(nK)

Jackson’s Theorem: Under the assumptions made above, if ⇢j < 1, j = 1, 2, . . . , K, we have for
all (n1, n2, . . . , nK) � 0,

p(n) = p(n1, n2, . . . , nK) = p1(n1)p2(n2) · · · pK(nK)

where
pj(nj) = ⇢

nj

j (1� ⇢j), nj � 0, j = 1, 2, . . . , K

Proof: Idea: using an intelligent guess to get the stationary probability distribution as above, then
verify the total balance equations via the time-reversibility theorem!

For any states n and n
0, let qnn0 denote the corresponding rate. Define

q
⇤
nn0 =

p(n0)qn0n

p(n)
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In order to show that p(n) is the stationary distribution, we only need to show the total balance
equation:

X

n0
qnn0 =

X

n0
q
⇤
nn0 (13)

which is equivalent to
p(n)

X

n0
qnn0 =

X

n0
p(n0)qn0n

because p(n) > 0 and
P

n p(n) = 1.

We first derive various transition rates, which are given in the following table:

forward chain reversed chain
qnn(j+) = rj q

⇤
nn(j+ =

p(n(j+))qn(j+)n

p(n) = �j(1�
P

i pji)

qnn(j�) = µj(1�
P

i pji) q
⇤
nn(j�) =

µjrj
�j

qnn(i+,j�) = µjpji q
⇤
nn(i+,j�) =

µj�ipij
�j

qnn0 = 0, other n0
q
⇤
nn0 = 0, other n0

where
p(n(j+)) = ⇢jp(n), p(n(i+, j�)) = ⇢ip(n)/⇢j.

Next, we verify balance equation (13):

X

n0
qnn0 =

KX

j=1

qnn(j+) +
X

{(j,i)|nj>0}
qnn(i+,j�) +

X

{j|nj>0}
qnn(j�)

=
KX

j=1

rj +
X

{(j,i)|nj>0}
µjpji +

X

{j|nj>0}
µj(1�

KX

i=1

pji)

=
KX

j=1

rj +
X

{j|nj>0}
µj (14)

X

n0
q
⇤
nn0 =

KX

j=1

q
⇤
nn(j+) +

X

{(j,i)|nj>0}
q
⇤
nn(i+,j�) +

X

{j|nj>0}
q
⇤
nn(j�)

=
KX

j=1

�j(1�
KX

i=1

pji) +
X

{(j,i)|nj>0}

µj�ipij

�j
+

X

{j|nj>0}

µjrj

�j

=
KX

j=1

�j(1�
KX

i=1

pji) +
X

{j|nj>0}

µj[rj +
PK

i=1 �ipij]

�j

=
KX

j=1

�j(1�
KX

i=1

pji) +
X

{j|nj>0}

µj�j

�j
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=
KX

j=1

"

�j �
KX

i=1

�jpji

#

+
X

{j|nj>0}
µj

=
KX

j=1

rj +
X

{j|nj>0}
µj

which is equal to the right hand side of equation (14), hence the total balance equation holds,
therefore p(n) is the stationary distribution. This proves Jackson’s Theorem.

Remarks:

(1). q
⇤
nn0 is the transition rates for the reversed process, which corresponds to a network of queues

where traffic arrives at queue i from outside the network according to a Poisson process with
rates �i(1�

P
j pij), with the routing probabilities

�jpji

ri +
P

k �kpki
=

�jpji

�i

which is also the probability that an arriving customer at queue i just departed from queue j

in the forward process.

(2). The interarrival time in the reversed system are independent and exponentially distributed,
i.e., the departure process in the forward process is Poisson!

(3). In Jackson networks, the number of jobs in the system’s queues are distributed as if each
queue is M/M/1 and is independent of the other queues. However, the total arrival process
at each queue needs not be Poissonian!

Example 3.19. Consider system with feedback loop for I/O as shown in Figure 4). Assume all

+

+

λ λ1

λ2

λ1
µ1

µ2

p1

p2

CPU

I/O

Figure 4: Figure for Example 3.19

“Jackson’s assumptions” hold, find the probability distribution p(n1, n2).
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Solution: Write down the equations:

�1 = �+ �2

�2 = p2�1

with p1 + p2 = 1. Solving the equations we obtain the solution

�1 =
�

p1
> 0

�2 =
p2

p1
> 0

Define

⇢1 =
�1

µ1
=

1

p1

 
�

µ1

!

⇢2 =
�2

µ2
=

p2

p1

 
�

µ2

!

From Jackson’s Theorem, we obtain

p1(n1) = ⇢
n1
1 (1� ⇢1)

p2(n2) = ⇢
n2
2 (1� ⇢2)

8.2 Extensions of Jackson’s Theorem

There are many variations of Jackson networks under which Jackson’s Theorem is still valid. We
here only discuss a few.

8.2.1 State-dependent Service Rates

Multiservices case: when the service rate depends on the state of the queue, say, the service time
is exponentially distributed with rate 1/µj(m) when nj = m. Let

⇢j(m) =
�j

µj(m)

where
�j = rj +

X

i

�ipij.

Define

p̂j(nj) =

(
1 if nj = 0
⇢j(1)⇢j(2) · · · ⇢j(nj) if nj > 0
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Jackson’s Theorem: Under Jackson’s assumptions, for any n = (n1, n2, . . . , nK), we have

p(n) =
1

G
p̂1(n1)p̂2(n2) · · · p̂K(nK)

assuming that 0 < G < 1, where

G =
1X

n1

1X

n2=0

· · ·
1X

nK=0

p̂1(n1)p̂2(n2) · · · p̂K(nK),

the so-called normalization factor.

8.2.2 Multiple Classes of Customers

Let c = 1, 2, . . . , C denote the classes of jobs/customers, let rj(c) denote the rate of the external
Poisson arrivals of class c jobs at node j. Let pij(c) denote the routing probability of class c job
routing from node i to node j. Assume that

�j(c) = rj(c) +
KX

i=1

�i(c)pij(c), j = 1, 2, . . . , K, c = 1, 2, . . . , C

has a unique solution �j(c) such that �j(c) > 0. Assume also that the service times at queue j

are exponentially distributed with rate µj(m) for all customer classes. In this system, the state is a
composition of all queue states:

z = (z1, z2, . . . , zK)

where
zj = (c1, c2, . . . , cnj)

with

nj = # of customers in the jth queue

cj = the class number of the customers in the ith queue position

Define

⇢̂j(c,m) =
�j(c)

µj(m)
, j = 1, 2, . . . , K, c = 1, 2, . . . , C

⇢̂j(zj) =

(
1 if nj = 0
⇢̂j(c1, 1)⇢̂j(c2, 2) · · · ⇢̂j(cnj , nj) if nj > 0

G =
X

(z1,z2,...,zK)

KY

j=1

p̂j(zj) (normalization factor)
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Jackson’s Theorem: Assuming that 0 < G < 1, then the steady-state probability p̂(z) of the
state z = (z1, z2, . . . , zK) is given by the following product form:

p̂(z) =
1

G
p̂1(z1)p̂2(z2) · · · p̂K(zK).

The steady-state probability p(n) = p(n1, n2, . . . , nK) of having a total of nj customers at queue
j = 1, 2, . . . , K is given by

p(n) =
X

z2Z(n)

p̂(z)

where Z(n) is the set of states for which there exists a total of nj customers in queue j.

Example: When C = 1, we obtain the single class OQN.

8.3 The Kleinrock Independence Approximation:
Virtual Circuit Networks

Xs

i

j

Xs

λij

2

1

Xs3

Figure 5: Kleinrock Independence

Assume that there exist several packet streams in the open network, each stream following a
unique path that consists of multiple links through the network (see Figure 5). Let Xs be the arrival
rate of packet stream s. The total arrival rate at link (i, j) is

�ij =
X

all packet streams s crossing (i, j)
Xs
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If packet flow bifurcation is allowed, i.e., fij(s): the fraction of the flow s traversing (i, j) link, so

�ij =
X

s!(i,j)

fij(s)Xs.

Idea: If over the link, there are substantial amount of external Poisson traffic injected, the overall
traffic over the link can be modeled by the Poisson process, leading to the following approximation:
the Poisson dominant traffic will represent the overall traffic (see Figure 6). If the service at each

Node
or

Link

λ

λ

λ >> λ
1 2

2

1

Poisson

Figure 6: Approximation illustration

link is exponentially distributed, then each link can be modeled as M/M/1. This is known as the
Kleinrock Independence Approximation (in terms of interarrival times).

Under this condition, let 1/µij denote the average transmission time over link (i, j), Nij denotes
the average number over link (i, j) and N the average number in the network, then

Nij =
�ij

µij � �ij

N =
X

(i,j)

Nij =
X

(i,j)

�ij

µij � �ij

From Little’s law, the average system (network) time or delay is

T =
N

�
=

P
(i,j)

�ij

µij��ijP
s Xs

.
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8.4 Network Delay in Queueing Networks

In Open Queueing Networks, we observe that the Kleinrock Independence Approximation is also
valid: each node can be modeled as M/M/1, thus,

Ni =
�i

µi � �i

N =
X

i

Ni =
X

i

�i

µi � �i

T =
N

�
=

P
i

�i
µi��iPK
i=1 ri

Another approach:

�T = NE[n] =
X

(n1,n2,...,nK)

(n1 + n2 + · · ·+ nK)p(n1, n2, . . . , nK)

=
X

i

2

4
X

ni

ni

X

n1,...,ni�1,ni+1,...,nK)

p(n1, n2, . . . , nK)

3

5

=
X

i

"
X

ni

nipi(ni)

#

=
X

i

E[ni] =
X

i

Ni

End-to-end Delay

E[Ti1i2···ir ] =
X

m

Tim =
X

m

1

µim � �im

.

8.5 Closed Queueing Networks (CQN)

The total number of jobs remains constant!

• M— # of customers/jobs in the system

• pij— routing probability from queue i to queue j and
PK

j=1 pij = 1

• µj(m)— service rate at jth queue when there exists m jobs

• �j— total arrival rate to queue i
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Thus, we must have

�j =
KX

i=1

�ipij, j = 1, 2, . . . K

� = P�, (I � P )� = 0 (15)

where P = (pij) is the routing matrix and I is the identity matrix. Assume that P is irreducible
(i.e., if we regard pij as the transition probabilities for a finite-state Markov chain, the Markov
chain is irreducible). Then, all solutions � = (�1,�2, . . . ,�K)T of equation (15) will be in the
form of

�j = ↵�̄j, j = 1, 2, . . . , K

where ↵ is a scalar and �̄j (j = 1, 2, . . . , K) is a particular solution with �̄j > 0 for all j. Let

⇢j(m) =
�̄j

µj(m)
, j = 1, 2, . . . , K,m = 1, 2, . . .

p̂j(nj) =

(
1 if nj = 0
⇢j(1)⇢j(2) · · · ⇢j(nj) if nj > 0

G = G(M) =
X

n1+n2+···+nK=M

p̂1(n1)p̂2(n2) · · · p̂K(nK)

Jackson’s Theorem for CQN: Under the proceeding assumptions, for any n = (n1, n2, . . . , nK)

satisfying n1 + n2 + · · ·+ nK = M , we have

p(n) =
1

G
p̂1(n1)p̂2(n2) · · · p̂K(nK).

Proof: Similar to the proof for OPN, for any n, n
0, define

q
⇤
nn0 =

p(n0)qn0n

p(n)

we need to prove the total balance equations. We use the same notation, we can easily verify the
following:

qnn(i+,j�) = µj(nj)pji

q
⇤
nn(i+,j�) =

p(n(i+, j�))qn(i+,j�)n

p(n)

=
⇢i(ni + 1)

⇢j(nj)
µi(ni + 1)pij =

µ(nj)�̄i

�̄j
pij

Now, we verify the total balance equation

X

m

qnm =
X

m

q
⇤
nm.
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In fact, we can easily obtain

X

m

qnm =
X

(j,i)|nj>0

qnn(i+,j�) =
X

(j,i)|nj>0

µj(nj)pji

=
KX

i=1

X

nj>0

µj(nj)pji =
X

nj>0

µj(nj)

 
KX

i=1

pji

!

=
X

nj>0

µj(nj)

and

X

m

q
⇤
nm =

X

(j,i)|nj>0

q
⇤
nn(i+,j�) =

X

(j,i)|nj>0

µj(nj)�̄ipij

�̄j

=
X

nj>0

µj(nj)

�̄j

 
KX

i=1

�̄ipij

!

=
X

nj>0

µj(nj)

This completes the proof.

Remark: Obviously, the probability distribution p(n) does not depend on the choice of the solution
of (15) because all solutions are just a constant multiple of the particular solution, the constant has
been cancelled out in the probability distribution.

Example: Consider the CQN shown in Figure 7. First, we solve the rate equations

+

+

λ1

λ2

µ1

µ2

CPU

I/O

p1

p
2

=1-p 1

Figure 7: CQN example

�1 = p1�1 + �2

�2 = p2�1

Choose �̄1 = µ1 and �̄2 = p2µ1, we obtain

⇢1 = 1, ⇢2 =
p2µ1

µ2
.
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Then, the steady-state probability is given by

p(M � n, n) =
1

G
⇢
n
2 , n = 0, 1, 2, . . . ,M,

where

G(M) = G =
X

n

p̂1(n)p̂2(n) =
X

n

⇢
n
2 =

1� ⇢
M+1
2

1� ⇢2
.

The utilization factor for the CPU is given by

U(M) = 1� p(0,M) = 1� ⇢
M
2

G(M)
=

G(M)� ⇢
M
2

G(M)
=

G(M � 1)

G(M)
.

The arrival rate at CPU is (from the Little’s law)

�1(M) = U(M)µ1.

8.5.1 Computation of Normalization Factor G

Although the result for CQN is beautiful in nature, the difficulty in using it is how to compute
the normalization factor G = G(M). When M is large, we may face the curse-of-dimensionality
problem! In this subsection, we present a recursive algorithm for a special case: when the service
does not depend on the number of customers, i.e., µi(m) = µi. Details can be found in Schwartz’s
book (page 225).

Let

G(n, k) =
X

n1+n2+···+nk=n

kY

i=1

⇢
ni
i

where ⇢i = �̄j/µj(m) = �̄j/µj . We claim that all desired statistics of the CQN can be obtained
from the normalization factor G(M,K). The normalization factor can be obtained from the fol-
lowing recursive formula

G(n, k) = G(n, k � 1) + ⇢kG(n� 1, k), ⇢k = �k/µk (16)

with the initial starting conditions given by

G(n, 1) = ⇢
n
1 , n = 1, 2, . . . ,M

G(0, k) = 1, k = 1, 2, . . . , K

Proof: We can divide the summation into two cases: when nk = 0 and nk > 0, so we have

G(n, k) =
X

n1+···+nk=n

kY

i=1

⇢
ni
i
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=
X

n1+···+nk�1=n

k�1Y

i=1

⇢
ni
i +

X

n1+···+nk=n,nk>0

 
k�1Y

i=1

⇢
ni
i

!

⇢
nk
k

= G(n, k � 1) + ⇢k

X

n1+···+(nk�1)=n�1,nk>0

 
k�1Y

i=1

⇢
ni
i

!

⇢
nk�1
k

= G(n, k � 1) + ⇢k

X

n1+···+nk=n�1

 
k�1Y

i=1

⇢
ni
i

!

⇢
nk
k

= G(n, k � 1) + ⇢kG(n� 1, k)

This completes the proof.

Next, we show that many statistics can be obtained from the normalization factor function.

(i). Pr(ni � k) = ⇢
k
iG(M � k,K)/G(M,K).

Proof:

Pr(ni � k) =
X

n1+···+nK=M, ni�k

p(n)

=
X

n1+···+nK=M, ni�k

QK
j=1 ⇢

nj

j

G(M,K)

=
⇢
k
i

⇣P
n1+···+(ni�k)+···+nK=M�k

⇣Q
j 6=i ⇢

nj

j

⌘
⇢
ni�k
i

⌘

G(M,K)

=
⇢
k
iG(M � k,K)

G(M,K)

(ii). Marginal distribution:

Pr(ni = k) = Pr(ni � k)� Pr(ni � k + 1) =
⇢
k
i [G(M � k,K)� ⇢iG(M � k � 1, K)]

G(M,K)
.

(iii). Average number of jobs at a node:

E(ni) =
MX

k=0

k Pr(ni = k) =
MX

k=0

k[Pr(ni � k)� Pr(ni � k + 1)]

=
MX

k=0

Pr(ni � k) =
MX

k=1

⇢
k
i

G(M � k,K)

G(M,K)

(iv). Average total number

N =
KX

i=1

E(ni) =
KX

i=1

MX

k=1

⇢
k
i

G(M � k,K)

G(M,K)

=
nX

r=1

 
MX

i=1

⇢
r
i

!
G(M � r,K)

G(M,K)
= M
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Remark: In any case, recursive procedure can be developed for almost all statistics.

8.6 Important Generalizations

Intensive research has been carried out for finding conditions under which the product form exists.
There are a few special classes:

• Phase-type distributed service time: (1) processor sharing (µ ! µ/n); (2) last come first
serve (LCFS)

• BCMP: most general set of conditions under which the product form exists.

References

• F.P. Kelly, Reversibility and Stochastic Networks, John Wiley and Sons, 1979.

• F. Baskett, M. Chandy, R. Muntz and J. Palacios, “Open, closed and mixed networks of
queues with different classes of customers,” Journal of the ACM, 22, 248-260, 1975.

The details will be discussed in the future.
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9 BCMP Networks

The pursuit of product form for queueing networks leads to BCMP networks. People are searching
for conditions/assumptions under which the product form will be valid, service time distribution
and service disciplines seem to be the key factors!

9.1 Service Time Distributions

Exponential distribution has been used in many applications due to its simplicity, however, many
time variables we come across today show non-exponential characteristics: service is fat-tailed
(web traffic), packet arrivals show the break-down of Poisson traffic. More general models are
needed.

Search for the model:

• General enough to approximate the field data

• Simple enough to give the attractability for analytical solutions: the preservation of Markov
property

9.1.1 Staging methods (Cox, 1959)

Serial staging

Multiple exponential service facilities are connected in Tandem. Mathematically, we have

⇠ = t1 + t2 + · · ·+ tm

where ti is exponentially distributed with parameter µi. We have (f ⇤(s) indicates the Laplace
transform of f(t))

E[⇠] =
mX

i=1

E[ti] =
mX

i=1

1

µi

f
⇤
⇠ (s) =

 
µ1

s+ µ1

! 
µ2

s+ µ2

!

· · ·
 

µm

s+ µm

!

Special cases:

• Erlang distribution: µ1 = µ2 = · · · = µm = µ;
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• Exponential distribution: m = 1.

Parallel staging

Traffic is splitting into multiple streams, each of which is an exponential service facility, the
branching probabilities are ↵i, i = 1, 2, . . . ,m with

Pm
i=1 ↵i = 1. This is equivalent to the random

variable ⇠ defined as ⇠ = ti with probability ↵i, where ti is exponentially distributed with parameter
↵i. The Laplace transform is

f
⇤
⇠ (s) =

mX

i=1

↵i
µi

s+ µi

which is also called hyper-exponential distribution.

Serial-Parallel Staging

The first stage is to branch with probabilities ↵i, i = 1, 2, . . . ,m, each branch forms a serial
staging, which gives the most general distribution. Assuming that the ith branch contains exponen-
tial service facilities with parameters: µij , j = 1, 2, . . . ,mi, then the Laplace transform is given
by

f
⇤
⇠ (s) =

mX

i=1

↵i

miY

j=1

 
µij

s+mij

!

.

Special cases:

• Hyper-exponential distribution: m1 = m2 = · · · = mm = 1;

• Mixed-Erlang (hyper-Erlang): µi1 = µi2 = · · · = µimi = µi

f
⇤
⇠ (s) =

mX

i=1

↵i

 
µi

s+ µi

!mi

or

f
⇤
⇠ (s) =

mX

i=1

↵i

 
miµi

s+miµi

!mi

where the latter can make the choice of µi independent of mi.

• SOHYP (Sum of Hyper-exponential) distribution (Rappaport)

f
⇤
⇠ (s) =

mY

i=1

0

@
miX

j=1

↵ij
µij

s+ µij

1

A .

Coxian model
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A

B

b b bµ µ µ0 1 l-11 2 l

(1-b  )0 1 l-1(1-b     )(1-b  )

Figure 8: Coxian model

The service point consists of a set of exponential servers, arranged as shown in Figure 8. A new
customer can enter into service only when the preceeding customer has left the staged network.
Let the total number of servers in the Coxian distribution is l, the service time of the mth stage
of Coxian model, having a exponential server with parameter µm. Define Am = b0b1 · · · bm�1,
which can be interpreted as the probability that a customer reaches the mth stage, then the Laplace
transform of the Coxian distribution is given by

f
⇤
⇠ (s) = b0 +

lX

m=1

Am(1� bm)
mY

j=1

 
µj

s+ µj

!

.

Phase-type distribution

This is a model general distribution model, which will play a very important role in matrix
geometric approach. We will postpone such discussion later.

Remarks:

• All distribution models obtained from staging method preserve the Markovian property (in
a multidimensional state space);

• Cox distributions are identical to distributions which have a rational Laplace transform;

• Erlang, hyper-exponential and series-parallel combinations are all Coxian;

• A sum of Cox distributions is also a Cox distribution.

9.2 Sevice disciplines

Service stations in a BCMP (basket, Chandy, Muntz, Palacios) network can obey any of the fol-
lowing possibilities:
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Type 1: The service discipline is first in, first out (FIFO), the station has a single server and the
service time is exponentially distributed with the same mean for all classes of customers. If station
i has a such server, we denote the rate of service by µi(ki) if there are ki customers in the station
(including the one which is in service).

Type 2: The discipline is that of time division (“processor sharing”, PS), that is, a customer at
the station receives 1/k seconds of service per second if there are k customers at the station. All
customers receive a small portion of their respective servuce time in turn. These quanta of service
received on each visit to the server tend to zero. The service time distribution can be a distinct Cox
distribution for each class of customers.

Type 3: The number of servers at the station is sufficient for there to be always at least one free.
This leads to the fact that a new customer entering the station starts his service immediately. The
service time distributions can be distinct Cox distributions for each class of customers.

Type 4: The service discipline is “last in, first out” (LIFO) with an absolute priority for the newly
arriving customer. There is a single server, that is a new arrival at the station interrupts the cus-
tomer’s service in order to start his own. The displaced customer is returned to the head of the
queue and he rejoins his service where it left off, when the customer who caused the interruption
finishes its service. The service time distribution can be Cox, which may be different for each class
of customers.

9.3 BCMP Theorem

Let i = 1, 2, . . . , I be the indices of a partition of the classes of customers, c = 1, 2, . . . , R. Let Ki

denote the number of customers in the element of the partition having index i. Assuming that the
arrival process of new customers in the network is Poisson with the following two possibilities:

• �(K) is the rate of arrivals from the exterior when there are K customers in the network;

• �i(Ki) is the rate of arrivals from the exterior of customers in partition i of which there are
Ki custoers in the network.

Let eir denote the relative frequency of the number of visits to station i by a customer of class
r, then we have

eir =
RX

r0=1

0

@
NX

j=1

ejr0pjr0,ir + p0r0,ir

1

A .
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Let k̂ = (k̂1, . . . , k̂N) be the state vector of the network which depends on the type of service
discipline:

Type 1: k̂i = (ki1, . . . , kiki) where kij is the class of the jth customer waiting at station i in FCFS
order.

Type 2 or 3:
k̂i = ((ki1, si1), . . . , (kiki , siki))

where kij is the class of the jth customer waiting in the order of arrival and sij is the stage of the
Cox model.

Type 4:
k̂i = ((ki1, si1), . . . , (kiki , siki))

where kij and sij are identical to those defined above, the order of the kij being defined by LIFO
discipline.

Define

fi(k̂i) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Qki
j=1

eikij
µi(j)

if i is of type 1

ki!
QR

r=1

Qlr
m=1

(eirAirm/µirm)kirm

kirm! if i is of type 2

QR
r=1

Qlir
m=1

(eirAirm/µirm)kirm

kirm! if i is of type 3

Qki
j=1

eikijAikij

µi(kij ,sij)
if i is of type 4

where parameters such as Airm, Aikij , lir and µirm are parameters in Cox distributions. Define

d(K) =

( QK�1
m=0 �(m) if the network is open

1 if the network is closed

In the case of distinct arrival process for the sub-chains 1, 2, . . . , n, we define

d(K) =

( Qn
j=1

QKi�1
i=0 �(i) if the network is open

1 if the network is closed

Define

� =
X

k̂

d(K)
NY

i=1

fi(k̂i)

BCMP Theorem: If � < +1, a steady-state probability distribution exists and is given by

p(k̂) = �
�1
d(K)

NY

i=1

fi(k̂i).
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Remarks:

• The probability distribution involves only the first moments of the service distributions.

• The joint probability distribution is the product form of the marginal probabilities, which
allows the network to be studied station by station.

• The principal difficulty encountered is calculation of the normalization constant �.


