
Solutions for Homework 1

1. The exponential distribution for the random variable
�

has the following density function
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(1). Find the mean, the variance and the coefficient of variation;

(2). Find the characteristic function, moment generating function and the Laplace transform

of the pdf;

(3). Show that the exponential distribution has the following memoryless property: for any� ���
and

�����
, we have
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In fact, a stronger version can be shown: for any nonnegative random variable % , we

have � � � �#� � %  � � % �	� � � � �#���&�
Solution: (1). The mean is ')( 
 , the variance is ')( 
+* , and the coefficient of variation is ' .
(2). The characteristic function is
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The moment generating function is
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The Laplace transform is �QP!� � �6�L./=M���KR02"@+� 

�S� 
 �
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, we have
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The second statement has been proved in class.

2. Find the pdf for the minimum of a independent random variables, each of which is expo-

nentially distributed with parameter



. Find the Laplace transform of the pdf for the sum of

the a independent random variables, each of which is exponentially distributed?
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Solution: Let ��� � � * �A�O�A�O� ��� denote the a independent exponential random variables with

parameter



, let � be the minimum of all, i.e., � �����
	�� �
� � � * �A�A�A�$� ����� , let � denote

the CDF, then we have
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Thus, the pdf is ����D+�6��� 
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which is exponentially distributed with parameter a 


. Let � � �
� � ����� � ��� , then its

Laplace transform will be
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3. Consider the discrete-time, discrete-state Markov chain with the probability transition matrix% ���'& ���'&���)(*& ���'+,&.- �
Find the stationary state probability vector / . Suppose that you are an outsider observer and

observe the evolution of the Markov chain, how often you find the chain stay in the state 1?

Solution: To find the stationary probability distribution, we only need to find the solution

for the following equations

/ � � // � � '
where / � �10 ; �20 � � and

� � � ' � ' �43 . These equations can be explicitly written as

���'&50 ; � ���)(*&50 � � 0 ;���'&50 ; � ���)+*&50 � � 0 �0 ; � 0 � � '
Solving these equations, we obtain

0 ; � ���76
and

0 � � �K�78
. Thus, the stationary distribution

is / � �5�K�'6�� ���78 �
.

Thus, we will find the chain in state ' 8 � 9 of the time (the long-run probability).


