Solutions for Homework 1

1. The exponential distribution for the random variable ξ has the following density function

$$f(t) = \lambda e^{-\lambda t}, \ t \ge 0.$$

- (1). Find the mean, the variance and the coefficient of variation;
- (2). Find the characteristic function, moment generating function and the Laplace transform of the pdf;
- (3). Show that the exponential distribution has the following memoryless property: for any $s \ge 0$ and $t \ge 0$, we have

$$P(\xi \ge s + t | \xi \ge s) = P(\xi \ge t).$$

In fact, a stronger version can be shown: for any nonnegative random variable ν , we have

$$P(\xi \ge t + \nu | \xi \ge \nu) = P(\xi \ge t).$$

Solution: (1). The mean is $1/\lambda$, the variance is $1/\lambda^2$, and the coefficient of variation is 1.

(2). The characteristic function is

$$\phi(t) = E(e^{jXt}) = \int_0^\infty e^{jxt} [\lambda e^{-\lambda x}] dx = \frac{\lambda}{-it + \lambda}.$$

The moment generating function is

$$M(v) = E[e^{vX}] = \frac{\lambda}{-v + \lambda}.$$

The Laplace transform is

$$f^*(s) = E[e^{-sX}] = \frac{\lambda}{s+\lambda}.$$

(3). $P(\xi > x) = e^{-\lambda x}$, we have

$$P(\xi \ge s + t | \xi \ge s) = \frac{P(\xi > t + s)}{P(\xi > s)} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(\xi > t).$$

The second statement has been proved in class.

2. Find the pdf for the minimum of K independent random variables, each of which is exponentially distributed with parameter λ . Find the Laplace transform of the pdf for the sum of the K independent random variables, each of which is exponentially distributed?

Solution: Let X_1, X_2, \ldots, X_K denote the K independent exponential random variables with parameter λ , let X be the minimum of all, i.e., $X = \min\{X_1, X_2, \ldots, X_K\}$, let F denote the CDF, then we have

$$1 - F(x) = P(X > x) = P(X_1 > x, X_2 > x, \dots, X_K > x)$$

= $P(X_1 > x)P(X_2 > x) \cdots P(X_K > x) = [P(X_1 > x)]^K = e^{-K\lambda x}.$

Thus, the pdf is

$$f(x) = k\lambda e^{-K\lambda x}.$$

which is exponentially distributed with parameter $K\lambda$. Let $Y = X_1 + \cdots + X_K$, then its Laplace transform will be

$$F_Y^*(s) = E(e^{-sY}) = E(e^{-sX_1}e^{-sX_2}\cdots e^{-sX_K})E[e^{-sX_1}]E[e^{-sX_2}]\cdots E[e^{sX_K}] = \left(\frac{\lambda}{s+\lambda}\right)^K.$$

3. Consider the discrete-time, discrete-state Markov chain with the probability transition matrix

$$\begin{pmatrix} 0.5 & 0.5 \\ 0.75 & 0.25 \end{pmatrix}.$$

Find the stationary state probability vector π . Suppose that you are an outsider observer and observe the evolution of the Markov chain, how often you find the chain stay in the state 1?

Solution: To find the stationary probability distribution, we only need to find the solution for the following equations

$$\pi P = \pi$$

$$\pi e = 1$$

where $\pi = (p_0, p_1)$ and $e = (1, 1)^T$. These equations can be explicitly written as

$$0.5p_0 + 0.75p_1 = p_0$$
$$0.5p_0 + 0.25p_1 = p_1$$
$$p_0 + p_1 = 1$$

Solving these equations, we obtain $p_0 = 0.6$ and $p_1 = 0.4$. Thus, the stationary distribution is $\pi = (0.6, 0.4)$.

Thus, we will find the chain in state 1.40% of the time (the long-run probability).