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Abstract—Mobile crowdsourcing (MC) is a transformative paradigm that engages a crowd of mobile users (i.e., workers) in the act

of collecting, analyzing, and disseminating information or sharing their resources. To ensure quality of service, MC platforms tend to

recommend MC tasks to workers based on their context information extracted from their interactions and smartphone sensors. This

raises privacy concerns that are hard to solve due to the constrained resources available on mobile devices. In this paper, we point

out fundamental trade-offs among three criteria–utility, privacy, and efficiency–in a MC system and propose a flexible optimization

framework that can be adjusted to any desired trade-off point with the joint efforts of MC platform and workers. We show that the

underlying optimization problems are NP-hard and present efficient approximation algorithms to solve them. Since worker statistics

are required for tuning the previous optimization models, we design an efficient aggregation protocol to collect worker feedbacks while

providing differential privacy guarantees. Both numerical evaluations and performance analysis are conducted to show the effectiveness

and efficiency of the proposed framework.

Index Terms—Mobile crowdsourcing, task recommendation, differential privacy.

✦

1 INTRODUCTION

M OBILE crowdsourcing (MC) is the combination of crowd-

sourcing and mobile technologies that leverages the sens-

ing, computing, and communication capabilities of mobile devices

to provide crowdsourcing services. According to the statistics

given by Statista [1], the number of smartphones sold to end

users worldwide is 1.2 billion in the single year of 2014. New

smartphones are usually equipped with various sensors including

GPS units, accelerometers, gyroscopes, and touch screen sensors,

which can provide a wide range of sensing data. The ubiquity

and advanced sensing capabilities of mobile devices enable mobile

users to gather rich information everywhere/anytime, and therefore

to perform tasks that can hardly be completed by web-based

crowdsourcing. In MC, a crowd of mobile users are engaged to

provide pervasive and cost-effective services of data collecting,

processing, and computing. These mobile users have shifted from

the traditional role of service consumers to the new role of service

providers, and they usually collect a small fee (or other forms of

reward) for providing services. The applications of mobile crowd-

sourcing have developed rapidly. Existing commercial MC appli-

cations include traffic monitoring (e.g., Waze [2]), ride sharing

(e.g. Uber [3]), environmental monitoring (e.g., Stereopublic [4]),

and wireless coverage mapping (e.g. OpenSignal [5]). Nonethe-

less, MC is still in its infancy, and there are many undergoing

research exploring applications such as epidemics monitoring and

prediction [6] and urban sensing [7].

In MC, a spatio-temporal task is outsourced to a group of

mobile users (i.e., workers) who perform the task within a dead-

line, and only workers under certain contexts are qualified for the
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task. However, it is quite inefficient for workers to select tasks

by themselves when there are a huge number of crowdsourcing

tasks, especially on a mobile device due to its limited screen

and keyboard. Hence, MC platforms must provide task recom-

mendation services which proactively push a task to qualified

workers. In current solutions, workers have to reveal their exact

contexts to MC platforms in order to receive personalized task

recommendation.

Depending on the application scenario, the context of a worker

can be defined along multiple dimensions, including geographical

(e.g., along a street), temporal (e.g., within hours), activity (e.g.,

moving speed), and profile (e.g., gender) [8]. These contexts

contain private and sensitive information that may be used to

uniquely identify an individual, reveal his/her health status, or

track his/her daily routines. However, the MC platforms are

potentially untrustworthy in the sense that they may be oper-

ated by various organizations and companies and may also be

compromised by malicious adversaries. Hence, allowing the MC

platforms to learn exact contexts may put worker privacy at risk

[9]. It is imperative to protect worker privacy in order to enable

the large-scale deployment of mobile crowdsourcing applications.

An MC system has three components that may reveal private

worker information: offline statistics collection to learn recom-

mendation rules based on worker contexts and historical task

completion performance, online task selection to select the most

suitable tasks to a worker based on his current context, and task

completion for a worker to accept and perform a task, and to

return the result back. Each component exposes worker contexts

and raises privacy concerns in different ways. In this paper, we

focus on the privacy issue of the first two components due to the

following reasons. First, context disclosure is more severe during

task recommendation, which consists of the first two components,

from the standpoint of the disclosure volume since all workers are

candidates for task recommendation, while only few workers are

eventually involved in the task completion component. Second, in

the task completion component, a worker sends explicit consent
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to perform a task, and context disclosure is unavoidable since

merely performing a task indicates that he/she is in the required

context. Note that identity protection during task completion could

be provided through anonymous routing or pseudonyms such as

Tor, and it is not the focus of this paper.

In this paper, we propose a framework for protecting privacy

of worker contexts while enabling effective task recommendation

in MC systems. Specifically, our proposed framework contains

two main components that may operate in parallel: privacy-aware

online task selection which selects the best MC tasks for workers

based on their current noisy contexts, and privacy-preserving

offline statistics collection which aggregates historical information

about worker contexts and task completion activities needed for

task selection while preserving worker privacy.

Privacy-Aware Online Task Selection. Current MC systems

select tasks by collecting personal data at a server. Workers have

to reveal their exact context information to the server in order to

participate. To address the privacy concerns of such server-only

recommendation, an alternative approach would be worker-only,

where workers’ mobile devices keep their own personal context

information and perform recommendation. Indeed, it has been

proposed for personalization in mobile advertising systems [10].

The problem with this approach is the huge computation and

communication overhead for resource-constrained mobile devices.

Thus, some recent papers propose hybrid solutions that jointly

consider both sides to address privacy issues in mobile systems

[11]–[14]. For example, in [11], the server returns a superset

of the results and let end users to filter useful information by

themselves. These solutions have a variety of optimization goals,

which motivates us to consider the fundamental trade-offs in these

mobile systems.

In this paper, we formulate the task selection from a MC

server to a worker as an optimization problem that considers

three criteria: (1) privacy that is related to the amount of the

worker’s context information shared with the MC server, (2)

utility that represents the benefits of recommending the tasks in

terms of relevance or revenue, and (3) efficiency that measures

the communication and computation overhead imposed on the

worker’s mobile devices by recommending a certain amount of

tasks. We show in Section 3 that these three criteria can not be

optimized simultaneously. Note that the aforementioned solutions

only present some discrete trade-off points: recommendation only

at the server side provides best efficiency and utility at the cost of

privacy, while recommendation at the worker side provides privacy

guarantees and utility at the cost of efficiency. In contrast to them,

we propose an optimization model that can be adjusted to any

desirable trade-off point. In the proposed optimization framework,

a worker can decide how much information about his context to

share with the MC server. Based on this limited information, the

MC server selects and sends a set of tasks to the worker. The

size of the task set is pre-defined by the worker considering the

associated communication and computation overhead. After the

worker receives the task set, he picks and completes the best task

based on his private information. The most challenging part in

the whole process is to select the task set sent by the MC server

that maximizes the total expected utility of the MC server given

constraints on privacy and efficiency. There are also other trade-

off points we can consider, such as jointly optimizing utility and

efficiency given a constraint on privacy. Since the priorities of

privacy and efficiency criteria can be arbitrarily selected by the

worker, the framework is quite flexible and can be used in different

MC systems.

Privacy-Preserving Offline Statistics Collection. Recom-

mended tasks are chosen based on statistics including both

historical performance of workers and the distribution of their

contexts. These statistics are collected offline and are used to

calibrate the online task selection component. However, estimating

these statistics often poses a privacy challenge: workers may

be unwilling to reveal the required information such as their

exact contexts and tasks that they have completed successfully.

Therefore, we need to provide a privacy-preserving solution that

can estimate these statistics from distributed worker data. Some

previous works propose to address privacy issues in statistical

queries by anonymizing data; however, there are possibilities that

data owners may be de-anonymized with auxiliary information

[15], [16]. Another approach, differential privacy, adds noise in

the querying results of statistical databases so that even with

auxiliary information, one can not infer the presence or absence

of individuals. Although differential privacy has become popular

recently, most of the solutions are proposed for a centralized

database, which is not suitable for our case in which data are

distributed among workers. On the other hand, existing distributed

solutions [17]–[20] are impractical for large systems. For example,

the computation cost per user in [18] is O(M) where M is the

number of users, which becomes prohibitive for a large population

of users. The computation cost is reduced toO(1) in [19], [20], but

they use an expensive secret sharing protocol that is not scalable

to a large group of workers. Additionally, the solution in [21] uses

two servers to collaboratively calculate statistics and handle user

dynamics. However, all these solutions can not prevent a single

malicious user from greatly distorting the querying results.

In this paper, we provide a privacy-preserving statistics col-

lection protocol to reliably compute the required statistics from

a dynamic set of workers who are potentially malicious. Our

solution relies on a semi-honest third party, a proxy, which

provides differential privacy guarantees by adding blind noise to

the encrypted worker data. Worker data are encrypted by workers

with the public key of MC server and are sanitized by the proxy.

Hence neither the proxy nor the MC server can learn the accurate

statistics or individual worker data.

In summary, the main contributions of this paper are as

follows.

• We identify the specific privacy challenges of task recom-

mendation in MC systems, and we propose a framework

that protects worker context privacy. To the best of our

knowledge, this is the first work to study privacy in task

recommendation for MC.

• We propose an optimization model for task selection

that explores fundamental trade-offs among three design

criteria–privacy, utility, and efficiency–in MC systems, and

we present efficient approximation algorithms to solve it.

• We introduce an efficient statistics collection protocol that

preserves differential privacy in a distributed setting with

tolerance of malicious or dynamic workers.

• We conduct both numerical evaluations and performance

analysis to show the effectiveness and efficiency of our

proposed framework.

The remainder of this paper is organized as follows. We

present our framework in Section 2. Next we represent the

task selection process as a constrained optimization problem in

Section 3. Section 4 develops an approximation algorithm to
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Fig. 1. Basic system model for task recommendation in MC.

solve the optimization problem. A privacy-preserving protocol

for statistics collection is presented in Section 5. We discuss the

experimental results and analyze the system overhead in Section 6

and Section 7, respectively. Section 8 summarizes related work.

Finally, we conclude the paper in Section 9.

2 THE PROPOSED FRAMEWORK

In this section, we describe the basic system model for task

recommendation in MC systems and design goals.

2.1 System Model

Fig. 1 shows the basic model of the proposed framework

consisting of the following two components:

• Statistics Collection. In this component, the server collects

various statistics from workers periodically in the back-

ground. A semi-honest third party (to be elaborated later

in Section 5) is employed to protect the private context

information of participating workers.

• Task Selection. In this component, based on the statis-

tics collected in the statistics collection component and

worker’s current context, the server selects and delivers

a set of tasks to the worker. Note that we allow workers

to decide how much private information they are willing

to share with the server. The server selects a set of tasks,

where the set size is constrained by a bounded commu-

nication overhead, based on this limited information and

sends them to the worker. The worker 1 then chooses the

most relevant one to complete based on all his private

information and returns the answer to task requesters.

Privacy Guarantees. Our framework can protect worker pri-

vacy in both online task selection and offline statistics collection.

Note that task selection and statistics collection use private worker

contexts in different ways, and therefore require different privacy-

preserving techniques.

In task selection, a single worker’s current context is used, and

we ensure worker privacy through limited information disclosure

as used in many mobile systems [13], [22], [23]. We allow the

worker to share a generalized context with the server rather than

his exact context. The generalization of worker context is done

according to a predefined hierarchy. Quantifiable contexts such

as location can be simply divided into different intervals based

on their values. For instance, location information represented

1. For brevity, we use “he” to refer to the worker without meaning any
distinctions about the worker’s gender in the rest of the paper.
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Fig. 2. (a) A basic generalization approach; (b) An adaptive generaliza-
tion approach.

by the latitude and longitude with a total of 6 decimal digits

can be generalized by keeping 6 − a decimal digits for level-

a generalization. An example of level-4 generalization is shown

in Fig. 2(a). A worker can also choose different (i.e., adaptive)

levels of generalization for different intervals of contexts with

existing approaches [11], as illustrated in Fig. 2(b). With the adap-

tive generalization approach, the worker can protect his location

privacy at a relatively low cost of utility. If a context information

is not quantifiable such as activities, it can be described in a

tree taxonomy. Fig. 3 shows an example describing activities

with different precisions. In this case, if a worker dining in a

restaurant chooses level-2 generalization, he would only tell the

server that he is static. In this paper, we focus on the challenge of

recommending tasks based on the generalized context rather than

how to generalize different contexts. Interesting readers may refer

to [24] for details about different generalization methods.

In statistics collection, historical context and task completion

information from workers is used. A worker can choose whether to

participate in the statistics collection protocol or not. If he decides

to participate, we ensure that no other party, except the worker

himself, could know his private information during the statistics

collection process. Moreover, we give the worker differential

privacy guarantees [18], which ensures that the resulting statistics

do not significantly change with the presence or absence of a

single worker. Therefore, an adversary with arbitrary background

knowledge cannot trace or de-anonymize a worker from multiple

runs of the statistics collection protocol.

2.2 Design Goals

We aim to provide good privacy, utility, and efficiency in the

proposed framework. Since task selection and statistics collection

differ in nature, we describe their design goals separately.

Goals for task selection. We have three design goals for task

selection: privacy, utility, and efficiency.
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• Privacy. Worker contexts are needed for task recommen-

dation, which may be leveraged by the server to uniquely

identify an individual worker. To reduce the risk of being

identified, the worker limits the information shared with

the server. Instead of providing an exact context, the

worker provides a generalized context which obfuscates

privacy sensitive information such as location and activity.

• Utility. Utility represents the value of a set of recom-

mended tasks. From the perspective of the server, the

utility is the expected revenue (or commission) of the

recommended tasks. From the perspective of the worker,

the utility is reflected in the payment he would obtain from

completing the recommended tasks. The utility for both

stakeholders is related to the payment of the task that is

selected and completed successfully by the worker.

• Efficiency. When a worker receives a set of recommended

tasks, he tries to select the best task from the set. A larger

set takes more time to select from, which contradicts the

intention of recommendation. Thus the efficiency of task

recommendation is directly related to the set size. The

recommendation system should recommend a reasonable

number of tasks at a time to ensure the efficiency of task

selection by the worker.

Goals for Statistics Collection. There are mainly three design

goals for statistics collection:

• Privacy. Worker privacy should be protected during statis-

tics collection.

• Robustness. The final statistics should not be distorted

largely by a small portion of malicious workers.

• Scalability. The system should be scalable to a large

population of workers, which means that the proposed

protocols should be highly efficient.

3 OPTIMIZATION MODEL FOR TASK SELECTION

In this section, we investigate fundamental trade-offs among

three design goals and formulate two optimization problems to

model them in the task selection component.

3.1 Definitions

Before proceeding further, we give the definitions for notations

used in the rest of the paper as follows.

Definition 1. Contexts and Tasks

• Denote by C = {c : c = 1, 2, . . . , |C|} the set of all exact

contexts. Each worker has an exact context c.

• Denote by Ĉ = {ĉ : ĉ = 1, 2, . . . , |Ĉ|} the set of

all generalized contexts. Each exact context is mapped

into a generalized context, and a generalized context may

correspond to multiple detailed contexts.

• Denote by T = {t : t = 1, 2, . . . , |T |} the set of

all tasks. For simplicity of notations, we treat tasks that

have the same requirements for worker contexts and the

same payment as one task. Each task may have multiple

instances. The payment for successfully completing a task

t is denoted as ρt.

Definition 2. Complete-and-Approve Rate (CAR): Both workers

and the MC platform can earn some money when tasks are

completed successfully (i.e., answers approved by task requesters).

This can be characterized by the complete-and-approve rate

(CAR), which can be calculated as N1, the total number of

workers with context c who have successfully completed task t,
divided by N2, the total number of workers with context c, i.e.,

CAR(t|c) = N1/N2.

3.2 Trade-Offs among Utility, Privacy and Efficiency

The optimization model of task selection specifies how to

choose tasks based on limited information about a worker. There

are three conflicting design goals in this model: utility, privacy, and

efficiency. These three goals cannot be optimized simultaneously.

First, suppose that privacy and efficiency are optimized, which

means that the worker provides no context about himself to the

system and expects to receive a single task tailored for him. In this

case, as long as the utility of tasks varies across different contexts,

it is impossible for the recommendation server to choose a task

that is of high utility for the worker. Second, consider the case

that efficiency and utility are optimized. In order to find a task

that has the highest utility for the worker, the recommendation

server needs to know the exact worker context, compromising his

privacy. Finally, if we want to ensure the optimality of utility and

privacy, the recommendation server needs to recommend, without

any prior knowledge of worker context, a set of tasks within which

the worker can find one to maximize his utility. In this case, the

efficiency becomes suboptimal since the recommended task set

would be very large. If any of the above three goals is dropped, it

is trivial to optimize the other two. Therefore, in practice, we have

to find a good trade-off among these three goals.

3.3 Optimization Problem Formulation

In our framework, the worker first decides the amount of

information about his private context to share with the server.

Based on this limited information, the server selects L tasks

T ⊂ T and sends them to the worker. Here, L determines the

efficiency. Then the worker selects a task from the recommended

L tasks, completes it, and returns the result back to the sever or

task requester. Therefore, the task is selected jointly by the server

and the worker in our framework.
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As mentioned before, there are three conflicting goals. Al-

though these goals cannot be optimized simultaneously, there are

several candidate objective functions that optimizes the goals from

different aspects. In the following, we choose an optimization

objective function representing the utility and model the other

two goals as constraints. In other words, we optimize the utility

while allowing the worker to determine the efficiency and privacy

requirements. Alternative objective functions are also discussed.

3.3.1 Computation at the worker side

Given a set of recommended tasks T , the worker selects one to

complete. The behavior of the worker is supposed to be rational.

In other words, the worker with exact context c would select the

task that maximizes his own revenue, which can be modeled as

t∗ = argmax
t∈T

ρt · CAR(t|c). (1)

3.3.2 Computation at the server side

Since the worker knows his own context, he can easily make

the selection by maximizing his revenue. This is not true for the

server as it can only select tasks based on the limited information

provided by the worker. To increase the relevance between rec-

ommended tasks and the worker, the server needs to recommend

multiple tasks at the same time.

Assume that the server already has prior knowledge on the

context-dependent click-and-approve rates, CAR(t|c), and the

probability distribution over contexts. From the perspective of the

server, its utility (i.e., revenue) depends on the task that the worker

chooses, and we use the expected revenue of the set of tasks to

quantify it. Since the server does not know the exact context c
of the worker, it considers the probability of each of the exact

contexts that generalize into ĉ and calculates the expected revenue

R of the set of tasks T as follows:

E[R(T |ĉ)] =
∑

c:c→ĉ

Pr[c|ĉ] · α ·max
t∈T

ρt · CAR(t|c), (2)

where α is the portion of revenue that the platform can obtain

for each successful transaction. Let L denote the size of the task

set. The server needs to select L tasks that maximize the expected

revenue given a generalized context ĉ, i.e.,

T ∗ = argmax
T⊆T :|T |=L

E[R(T |ĉ)]. (3)

3.3.3 Alternative Objectives

The above optimization model contains the extreme cases

when task selection is taken solely at the server side (L = 1)

or solely at the worker side (L = |T |). For the former case, if the

server recommends a single task based on a very generalized con-

text provided by the worker, it is likely that the recommendation

has a low utility. For the latter case, the server sends all the avail-

able tasks to the worker. The selection becomes inefficient, and

the recommendation service is meaningless. Hence, the parameter

L should be selected cautiously.

Instead of setting L as a predefined parameter, we can also

include it as one of the design variables. This can be done by

substituting E[R(T |ĉ)]−λ·L for the original objective E[R(T |ĉ)]
in (3), where λ is the weight of the efficiency metric L in the total

objective function. As a result, the server selects a set of tasks that

maximizes the new objective, i.e.,

T ∗ = argmax
T⊆T :|T |=L

E[R(T |ĉ)]− λ · L. (4)

In this way, the efficiency and the utility can be optimized jointly.

There are other options to model the utility as well. For

example, we can incorporate the cost of a task into the objective

such as time or other resources needed for completing a task.

In this case, the selection process among a set of tasks for

the worker becomes more complicated. A possible formulation

might be maxt∈T (ρt − costt,c) · CAR(t|c), where costt,c de-

notes the cost to complete task t by workers with context c.

In addition, there might be a reservation wage wr [25] below

which the worker would not pick the task. Considering this,

the process of task selection for a worker can be modeled as

maxt∈T (ρt − costt,c) · 1{ρt−costt,c≥wr} · CAR(t|c).

4 SOLUTION ALGORITHMS

In this section, we propose algorithms for the server and the

worker to optimize their objectives efficiently. We first consider

the specific scenario which optimizes the objective of utility as in

(2) and then discuss how to jointly optimize utility and efficiency

as in (4).

4.1 Approximation Algorithm for Optimizing the Utility

The optimization part for the worker can be easily solved since

he only needs to choose a task among L tasks, where L is usually

designed to be a small number. However, it is nontrivial for the

server to select L tasks from the entire task space T . Actually, we

have the following fact:

Proposition 1. Given a generalized context ĉ, it is NP-hard to

find a set of tasks T ∗ such that:

T ∗ = argmax
T⊆T :|T |=L

∑

c:c→ĉ

Pr[c|ĉ] · α ·max
t∈T

ρt · CAR(t|c). (5)

Proof. We prove the NP-hardness of the task recommendation

problem by providing a polynomial time reduction from the NP-

hard maximum coverage problem:

INSTANCE: A universe U = {u1, u2, . . . , um}, a family

S = {S1, S2, . . . , Sn} of subsets of U and a positive integer L.

QUESTION: Find a subset S ′ ⊆ S of size L, such that |∪Si∈S′Si|
is maximized. This problem can be shown as follows:

S ′∗ = argmax
S′⊆S:|S′|=L

∑

uj∈U

1uj∈S′ .

We construct a corresponding instance of the task recommen-

dation problem as follows: Let {cj : cj → ĉ} be the context

set corresponding to the universe U , where there is a context cj
that generalizes to ĉ for each element uj ∈ U . The size of the

context set equals the size of the universe |U|. Corresponding to

each subset Si ∈ S, define a task ti such that CAR(ti|cj) = 1 for

all elements uj ∈ Si and CAR(ti|cj) = 0 for uj /∈ Si. Moreover,

we set Pr[cj |ĉ] = 1/|U|, ∀cj → ĉ, ρt = 1, ∀t and α = 1. The

instance of the task recommendation problem can be shown as

follows:

T ∗ = argmax
T⊆T :|T |=L

1

U
·
∑

cj→ĉ

max
t∈T

CAR(t|cj).

It is trivial to show that any instance of the maximum coverage

problem can be reduced in polynomial time to an instance of

the task recommendation problem in the above way. An optimal

solution to the above instance of task selection problem yields an

optimal solution to the maximum coverage problem. Therefore,
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the task recommendation problem is at least as “hard” as the max-

imum coverage problem. Since the maximum coverage problem

is known to be NP-hard, our problem is also NP-hard.

Since the problem (5) is NP-hard, we propose a greedy

algorithm as shown in Algorithm 1 below.

Algorithm 1 Greedy Algorithm for Profit Maximization

Input: T , ĉ, L
Output: T

// initialization

1: T ← ∅;
2: repeat

3: t← argmaxt∈T E[R(T ∪ t|ĉ)]− E[R(T |ĉ)];
4: T ← T ∪ {t};
5: until |T | = L
6: return T

By repeatedly choosing a task that maximizes the utility

improvement, the greedy algorithm can be proved to approximate

the optimal value within 1 − 1/e. Note that in [26], a greedy

algorithm that solves the maximum coverage problem provides the

same approximation ratio. However in their problem, the set either

fully includes the element or not at all, while in our problem a task

can partially matches the context, which complicates the problem

and requires additional analysis. The proof of this approximation

ratio for our approximation algorithm is given below.

Proposition 2. The greedy algorithm approximates the optimal

solution within a factor of 1− 1/e.

Proof. Define a marginal utility function of adding set T ′ to T as

follows:

f(T, T ′) = E[R(T ∪ T ′|ĉ)]− E[R(T |ĉ)].

The function f(T, T ′) is submodular in the sense that

f(T1, T
′) > f(T2, T

′) for all sets T1 ⊂ T2. For l = 1, 2, . . . , L,

let Tl = {t1, t2, . . . , tl} be the greedy solution constructed up to

the end of the l-th stage; thus TL is the final greedy solution

returned. Similarly, let T ∗
L = {t∗1, t

∗
2, . . . , t

∗
L} be the optimal

solution of any fixed order and T ∗
l = {t∗1, t

∗
2, . . . , t

∗
l } represents

the first l tasks. Denote by m(l) =
∑l

i=1 mi the utility of Tl,

where ml = f(tl, Tl−1) is the marginal utility by adding tl to

Tl−1. Similarly, denote by m∗(l) =
∑l

i=1 m
∗
i the utility of T ∗

l ,

where m∗
l = f(t∗l , T

∗
l−1). Our aim is to prove

m(L) ≥ m∗(L) · (1− 1/e). (6)

To this end, we first prove

ml ≥ (m∗(L)−m(l − 1))/L, ∀l ∈ [1, L]. (7)

The marginal utility of adding set T ∗
L to set Tl−1 is f(Tl−1, T

∗
L),

which equals
∑l

i=1 f(Tl−1 ∪ T ∗
i−1, t

∗
i ). By the averaging ar-

gument, there exists an i such that f(Tl−1 ∪ T ∗
i−1, t

∗
i }) ≥

(m∗(L)−m(l−1))/L. We can then obtain ml = f(Tl−1, tl) ≥
f(Tl−1, t

∗
i ) ≥ (m∗(L)−m(l− 1))/L, where the first inequality

comes from how we choose tl, and the second comes from

submodularity.

We can then prove m(l) ≥ (1 − (1 − 1/L)l)m∗(L), ∀l ∈
[1, L] by induction. When l = 1, the result holds: m(l) = m1 ≥
m∗(L)/L = (1 − (1 − 1/L)l)m∗(L) from (7). Suppose the

inequality holds for l, i.e., m(l) ≥ (1 − (1 − 1/L)l)m∗(L), we

have

m(l + 1) = m(l) +ml+1 ≥ m(l) + (m∗(L)−m(l))/L

= m∗(L)/L+m(l)(1− 1/L)

≥ m∗(L)/L+m∗(L)(1− (1 − 1/L)l)(1− 1/L)

= (1 − (1− 1/L)l+1)m∗(L).

Let l = L in the above inequality, we have m(L) ≥ (1 − (1 −
1/L)L)m∗(L) ≥ (1 − 1/e)m∗(L), which completes the proof.

4.2 Approximation Algorithm for Jointly Optimizing the

Utility and Efficiency

As mentioned before, there are alternative objectives for the

optimization problem. We now discuss how can we jointly opti-

mize the utility and efficiency in (4). As we show below, this is

also an NP-hard problem.

Proposition 3. Given a generalized context ĉ, it is NP-hard to

find a set of tasks T ∗, such that:

T ∗ = argmax
T⊆T :|T |=L

∑

c:c→ĉ

Pr[c|ĉ]·α·max
t∈T

ρt ·CAR(t|c)−λ·L. (8)

Proof. In Proposition 1, we have proved the NP-hardness of

finding L tasks that maximizes the expected revenue defined in

(2). This is actually a special case of the new optimization problem

(8). If one can solve the new optimization problem in polynomial

time, and the resulting list of tasks is of size L0, then he can solve

the optimization problem defined in Proposition 1 with L = L0 in

polynomial time, which contradicts Proposition 1. Hence, the new

optimization problem is also NP-hard.

Below, we describe Algorithm 2 that approximately solves the

above optimization problem (8) in polynomial time and give the

analysis of approximation ratio in Proposition 4. In Algorithm 2,

Lmax denotes the maximum number of recommended tasks chosen

by the worker beforehand.

Algorithm 2 Greedy Algorithm for Jointly Utility and Efficiency

Optimization

Input: T , ĉ, λ, Lmax

Output: T
// initialization

1: L← 1, θ ← 0, T ← ∅;
2: while L ≤ Lmax do

3: Q← ∅;
4: repeat

5: t← argmaxt∈T E[R(Q ∪ t|ĉ)]− E[R(Q|ĉ)];
6: Q← Q ∪ {t};
7: until |Q| = L
8: if θ ≤ E[R(Q|ĉ)]− λ · L then

9: θ ← E[R(Q|ĉ)]− λ · L;

10: T ← Q;

11: end if

12: L← L+ 1;

13: end while

14: return T

Proposition 4. The greedy algorithm approximates the optimal

solution within a factor of 1− 1/e.
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Proof. Following the notations in the proof of Proposition 2, let

m(L) and m∗(L) denote the objective function value for the

greedy solution at a fixed L and the objective function value for

the optimal solution at a fixed L, respectively. Denote by mG and

m∗
G the objective function value over all L for the greedy solution

obtained by Algorithm 2 and the objective function value over

all L for the optimal solution, respectively. Our aim is to prove

mG ≥ m∗
G · (1− 1/e).

Suppose that the optimal objective function value m∗
G is

reached when L = L̃, we have m∗(L̃) = m∗
G. Now, from (6),

m(L̃) ≥ m∗(L̃)·(1−1/e) = m∗
G·(1−1/e). Since mG ≥ m(L),

∀L = 1, . . . , Lmax, we have mG ≥ mL̃ ≥ m∗
G ·(1−1/e), which

completes the proof.

5 PRIVACY-PRESERVING STATISTICS COLLEC-

TION

In the previous sections, we have assumed that the server

has prior information about worker statistics in the task selection

component such as Pr[c|ĉ] and CAR(t|c). In this section, we

describe how to obtain these statistics while achieving design goals

described in Section 2.2.

5.1 Problem Overview

There are three parties in the offline statistics collection

component: the MC server, workers, and a semi-honest third

party (proxy). The server makes statistics queries and collects

the results. Workers locally store their historical contexts as well

as performance records, and answer queries. The proxy plays a

mediation role between the server and the workers in order to

protect worker privacy. The idea of using a semi-honest proxy to

ensure distributed differential privacy has been used previously in

different applications [21], [27], [28]. Here, we use it for privacy-

preserving statistics collection in our framework.

5.1.1 Threat Model

The server is assumed to be potentially malicious in the sense

that it intends to violate worker privacy. The server may attempt

to use the statistics collection protocol to learn private information

about workers, or deploy its own workers and manipulate their

answers. Moreover, the server may also publish its collected

worker statistics.

Workers are also assumed to be potentially malicious in the

sense that they may distort the final statistics learned by the server

by submitting false or illegitimate answers.

The proxy is assumed to be semi-honest or “honest-but-

curious”, which means it will faithfully follow the specified

protocol, but may attempt to exploit additional information learned

in executing the protocol. The proxy does not collude with other

parties.

In practice, as suggested in [27], the server may pay the proxy

to execute the statistics collection protocol. Such a proxy has been

used in previous papers [29], [30] and the relationship between

the proxy and the MC server pre-exists in industry today which

usually does not lead to collusion. For example, pharmaceutical

companies pay an independent organization who evaluates the

safety, quality, or performance of their products and may give un-

favorable results against the pharmaceutical companies. Therefore,

we believe that it is reasonable to have such a semi-honest proxy

in our protocol. Note that some distributed differential privacy

designs [18]–[20] do not require such a proxy. However, they have

a high computation or communication cost, which is impractical

in most applications. With the semi-honest proxy, we can provide

differential privacy guarantees in a distributed setting with a much

higher efficiency.

5.1.2 Assumptions

We assume that workers have correct public keys for the server

and the proxy, that the server and the proxy have correct public

keys for each other, and that all the corresponding private keys

are securely kept. We also assume secure, reliable, and authenti-

cated communication channels among the server, the proxy, and

workers.

Workers are assumed to be dynamic, which means that they

may quit in the middle of the statistics collection process due

to unstable wireless connection or power saving. Moreover, the

computation and communication resources of worker devices are

assumed to be limited.

5.1.3 Privacy Definition

Our framework allows workers to choose whether to partici-

pate in statistics collection, and protect the privacy of participating

workers. We consider the privacy risk for participating workers

from two aspects. We first guarantee that no other party, except

the worker himself, would know his private information during

statistics collection. This can be achieved through data encryption

as shown in [31]–[33].

Moreover, we also consider privacy leakage that can not be

solved by data encryption. A potential privacy leakage is due

to multiple runs of statistics collection when a worker does not

participate in all runs, e.g., because he has reached home. Hence,

we should protect every worker from an adversary (with arbitrary

background knowledge) who tries to trace or de-anonymize a user

between several runs of statistics collection protocol. To this end,

we adopt the privacy notion of (ǫ, δ)-differential privacy [18],

which ensures that the result of our protocol does not significant

change with the presence or absence of a single worker. The

formal definition of (ǫ, δ)-differential privacy is given as follows

[18]:

Definition 3. A statistics collection algorithm F satisfies (ǫ, δ)-
differential privacy if, for all datasets D1 and D2 differing on

one record, and for all outputs O ⊆ range(F), the following

inequality holds:

Pr[F(D1) ∈ O] ≤ exp(ǫ)× Pr[F(D2) ∈ O] + δ. (9)

In other words, if the statistics are differentially private, the

adversary would not change his probabilistic belief about an

individual even with knowledge of the published statistics and

any other auxiliary information.

The strong guarantees provided by differential privacy is not

free. Privacy is enforced by adding noise to the outcome of the

algorithm. There are two privacy parameters ǫ and δ. The first

parameter ǫ bounds the ratio of output distributions on input of

D1 and D2, with higher ǫ representing weaker privacy guarantees.

The latter parameter δ relaxes the relative shift at events that are

unlikely to happen.

5.2 Computation of Worker Statistics Based on Count-

ing

Based on a differentially private counting procedure, the

statistics collection protocol gathers responses from workers and
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Fig. 4. Illustration of the answer vector for worker k.

transforms the responses into statistics Pr[c|ĉ] and CAR(t|c). We

first describe how these statistics can be computed over contexts

with a counting procedure. We will give the details of the counting

procedure in Section 5.3.

Calculating Pr[c|ĉ]. The statistic Pr[c|ĉ] is calculated as the

number of workers with context c divided by the number of work-

ers with generalized context ĉ. Hence, the MC server should count

the numbers of workers with context c and generalized context

ĉ, respectively. To this end, the MC server constructs a statistics

query which asks two questions: (1) “Is your private context c?”

and (2) “Is your generalized context ĉ?”. Both questions expect

binary answers “yes” (represented by 1) or “no” (represented

by 0). The answer from each worker k is a vector (b1k, b
2
k) that

consists of two bits, each corresponding to a question. An example

of the answer vector is shown in Fig. 4. Therefore, given a privacy-

preserving counting procedure, we can aggregate answers to these

two questions from workers, and calculate Pr[c|ĉ] in a privacy-

preserving manner.

Calculating CAR(t|c). The statistic CAR(t|c), as defined in

Section 3.1, is calculated as the total number of workers with

context c who have completed task t divided by the total number

of workers with context c. The MC server also generates a query

that consists of two questions: (1) “Is your context c?” and (2)

“If your context is c, have you successfully completed task t?”.

The answer to these two questions is contained in a two-bit vector

as well. If the context of the worker is not c, the answer of the

worker would be [0, 0]; if the context of the worker is c, and he

has successfully completed the task, his answer would be [1, 1]; if

the context of the worker is c but he does not complete the task,

his answer would be [0, 1]. Here, the first bit of the answer vector

indicates that the worker satisfies both context c and completion of

task t, while the second bit indicates whether the worker’s context

is c as shown in Fig. 4. Similarly, we can compute CAR(t|c)
using a counting procedure over answers to these questions from

workers.

In practice, the MC server first sets M and ǫ, where M
indicates the number of workers that need to be queried and ǫ is the

privacy budget that controls the amount of noise. The queries and

the parameters M and ǫ are then broadcasted to workers, whose

answers will be added bit by bit as shown in Fig. 5 by a privacy-

preserving counting procedure explained in the next section.

5.3 Distributed Differentially-Private Counting Proce-

dure

We now describe our differentially private counting procedure

which is the key part of the statistical collection protocol as

explained before. The counting procedure takes answers from

workers as the input data, and outputs a noisy sum with differential

privacy guarantees, i.e., a sum that does not significant change

with the presence or absence of a single worker. It is trivial to

Worker 1

Sum
...

...

Worker 2

...

Worker M

1

1b
2

1b

1

2b
2

2b

1

M
b

2

M
b

å
=

M

k

k
b

1

1
å
=

M

k

k
b

1

2

Fig. 5. Aggregation process of answer vectors from M workers.

WorkersProxyMC

Server

5. Noisy data

4. Add noise

based on ϵ

1. Query (c,M,ϵ) for Pr(c| ) or

(c,t,M,ϵ) for CAR(t|c)
2. Send query to M

users on the user list

3. Return encrypted

answers

6. Decrypt data

and calculate the

unbiased sum

Worker ID Timestamp Privacy Deficit Historical generalized contexts

0000001 Feb. 1, 2015 0.1

0000002 Feb. 9, 2015 0.5

… … … …

1005500 Dec. 9, 2014 0

ĉ1, ĉ2, ...

ĉ1, ĉ2, ĉ3 ...

ĉ1, ĉ2, ...

Worker List:

ĉ

Fig. 6. Schematics of our privacy-preserving counting process.

achieve this privacy goal in a centralized setting, where the data

owner fully possesses the data and can easily add noise to the

sum before revealing it to others. However, in our distributed

setting where the data are owned by workers themselves, it is

non-trivial to add the noise to the distributed data. There are a few

works which provide differential privacy in a distributed setting

[18]–[20]. However, they either have a high computation cost on

each user [18] or requires users to be online during the whole

computation process [19], [20], rendering them impractical for a

large-scale setting as our scenario.

To ensure the scalability of our protocol, we employ a semi-

honest proxy to achieve differential privacy under distributed

setting. The proxy will aggregate answers from workers and add

noise to the sum; however, it is unable to learn the value of answers

or their sum. Moreover, since the final statistics are open to public,

the proxy cannot learn the added noise. Otherwise, it may subtract

the noise from the noisy sum and obtain the accurate count. This

requires that the proxy can only “blindly” add the differentially

private noise.

As depicted in Fig. 6, the counting protocol works as follows:

Step 1: Depending on the type of statistics it wants to

calculate, the server formulates a query request and specifies the

number of queried workers M and the privacy parameter ǫ for this

query.

Step 2: The proxy has access to a worker list which records the

historical general contexts ĉ of workers, their current privacy loss,

and the timestamps when they last connected to the proxy. For a

query with a specific context c, the proxy sends it to M workers

from the worker list whose historical general contexts may cover

context c and whose privacy loss has not exceed a predefined



9

threshold. After workers return their answers, the proxy will add

ǫ and δ to the privacy loss of queried workers in the worker list.

Step 3: After a worker receives the query, he constructs an

answer vector as described in Section 5.2. The worker needs to

prevent the proxy from learning his answer, thus he encrypts

his answer with the public key of the MC server and sends the

ciphertext to the proxy. For instance, if the answer is (0, 1),
the encrypted answer would be e(0)||e(1), where e(·) is the

encryption operation under the public key of the MC server. For

ease of presentation, we call the encrypted binary bit e(·) as a coin.

We will explain the used cryptosystem at this step in Section 5.4.

Step 4: The proxy aggregates the coins into buckets with each

bucket corresponding to a bit in the answer vector. The proxy also

adds binomial noise to each bucket based on the privacy budget ǫ,
where the noise consists of coins with random binary values to be

specified in Section 5.4. For example, if the amount of noise is N ,

then N coins are added to each bucket.

Step 5: The proxy forwards the buckets to the MC server.

Step 6: After the MC server receives the buckets for a certain

query, it first decrypts all the coins in each bucket with its private

key and sums up the decrypted values in each bucket. The final

results are calculated as
∑

k b
1
k −N/2 and

∑
k b

2
k −N/2, where

N/2 is used to cancel the added noise. Since the MC server

cannot tell who constructs the coins, the identities of workers are

anonymized.

Note that when workers communicate with the proxy, standard

cryptographic protocols such as TLS are used. Therefore, only

the proxy can learn the content of messages sent from workers.

Similarly, standard cryptographic protocols are used during the

communication between the proxy and the MC server.

5.4 Coin Generation and Noise Addition

In this section, we give the details about coin generation, that

is, encryption of binary data. We use the Goldwasser-Micali (GM)

cryptosystem [34] due to its high efficiency in encrypting binary

values and its XOR-homomorphic property.

For completeness, we briefly describe the GM encryption

process as follows.

• Key Generation: Let N ≡ p·q where p and q are two large

prime numbers independent of each other. Choose a non-

residue x such that the Legendre symbol x/p = x/q =
−1, and hence the Jacobi symbol x/N = +1. The public

key is (N, x), and the private key is (p, q).
• Encryption: Let b be the message we want to encrypt.

Choose a non-zero random number r ∈ Z
∗
N . The cipher-

text e is given by

e ≡ r2 · xb mod N. (10)

• Decryption: Given the ciphertext e, the receiver uses the

prime factorization (p, q) to check whether e is a quadratic

residue. In order to do this, the receiver first computes

ep = e mod p and eq = e mod q. If both e
(p−1)/2
p =

1 mod p and e
(q−1)/2
q = 1 mod q hold, then e is called

a quadratic residue. The receiver sets b = 0 if e is a

quadratic residue, and sets b = 1 otherwise.

5.4.1 Differentially Private Noise

The amount of noise required to achieve (ǫ, δ)-differential

privacy is calculated in [18] and described as follows.

Proposition 5. Let N be the number of unbiased coins added in a

bucket, i.e., the amount of Binomial noise. The statistics collection

algorithm achieves (ǫ, δ)-differential privacy if

N ≥
64 ln(2δ )

ǫ2
. (11)

The parameters δ and M is selected by the server. Suppose that

any query of each person is sensitive, then δ > 1/M indicates the

disclosure of at least one person’s privacy. Therefore, δ is selected

to be smaller than 1/M . With this constraint, the amount of noise

added into each bucket should satisfy

N ≥
64 ln(2M)

ǫ2
. (12)

5.4.2 Blind Noise Generation

Note that the proxy should collaborate with workers to gener-

ate unbiased and blind coins. If the proxy generates the unbiased

coins by itself, it would know the accurate value of the noise.

When the server publishes the obfuscated statistics later, the

proxy could recover the accurate statistics. On the other hand,

if the workers are trusted to generate the noise coins, they may

intentionally distort the final statistics by generating biased noise

coins.

To address this issue, following a flipping approach proposed

in [27], we let the workers generate N coins first, which are

flipped by the semi-honest proxy. This is made possible with the

XOR-homomorphic property of GM encryption, where the result

of XOR operation on plaintexts can be obtained by decrypting the

product of the ciphertexts. Note that for any b, b′ ∈ {0, 1}, we

have

e(b) · e(b′) = e (b⊕ b′ mod N) , (13)

where e(·) is the encryption operator. With this homomorphic

property, two parties can collaboratively generate an encrypted

value of either 0 or 1 while no single party can know or control the

final results. As long as one of the two parties is unbiased, the final

results would be unbiased. Hence multiplying a coin generated

by workers and an unbiased coin generated by the proxy always

results in a flipped coin that is both unbiased and hidden from the

proxy. In this way, we can generate a pool of unbiased coins for

noise addition.

5.5 Analysis of Design Goals

We have listed three design goals in Section 2.2: privacy,

scalability, and robustness. In the following, we analyze how can

we achieve these goals in the proposed protocol.

Privacy. Our protocol ensures differential privacy for all

workers. Whenever a worker participates in the statistics collection

procedure, he reveals some information about himself. Such kind

of privacy loss is quantified by the privacy budget [18], [35].

The privacy loss is accumulated across queries until it surpasses

the worker’s privacy budget. Then the worker stops contributing

any data in the statistics collection procedure. This provides the

best privacy for the worker. However, it influences the lifetime of

our protocol because after all existing workers reach their privacy

budgets, the statistics can only be learned from new workers. Note

that in our framework, the database is adaptive due to the following

reasons. First, worker context may change over time. Second, the

set of workers that answer the same query would changes. If a

worker stops contributing his data, the influence of his data to



10

2 3 4 5 6 7 8 9 10
0.975

0.98

0.985

0.99

0.995

1

Number of recommended tasks

A
v
er

ag
e 

re
v
en

u
e

 

 

2 3 4 5 6 7 8 9 10
0.7

0.71

Number of recommended tasks

A
v
er

ag
e 

re
v
en

u
e

 

 

baseline2              

baseline1

our algorithm (G
1
)

our algorithm (G
2
)

our algorithm (G
3
)

our algorithm (G
4
)

Fig. 7. Effect of generalization level in Problem (3).

the final result will decrease over time. With such observations,

we can treat the privacy loss as the worst-case measurement. In

practice, the proxy maintains a worker list which records the latest

login time of each worker. If a worker does not contribute data for

a long time, his privacy loss can be set back to 0.

Scalability. To achieve the scalability goal, we should first

ensure low per-worker computation cost so that even when the

number of workers is large, the cost for individual worker does

not change much. In our protocol, the cost per worker is O(1).
When the number of workers is large, it is hard to ensure that all

workers are online during the process. Hence we should ensure

that the statistics can be computed even when some workers leave

in the middle of the computation process. In our protocol, workers

only need to submit answers once and no further communication

is required after that. Therefore, our protocol allows workers to

leave after they submit their answers.

Robustness. With the GM encryption, we are able to bound

the error brought by malicious workers due to the following

reasons. First, the data encrypted by GM encryption is guaranteed

to be either 0 or 1. This can by done by checking the Jacobi

symbols of ciphertexts at the proxy (Jacobi symbol of legitimate

ciphertexts is “+1”) or checking the decrypted value at the MC

server. Second, each worker could only add a single coin to each

bucket. Therefore, a malicious worker would be unable to distort

the final sum by more than 1. If an adversary tries to substantially

distort the final sum, it should employ a large number of malicious

workers, which is difficult in practice. Suppose 1% of workers are

malicious, the error introduced by malicious worker would be less

than 1%.

6 PERFORMANCE EVALUATION

To evaluate the performance of the proposed optimization al-

gorithms, we generate a synthetic dataset to simulate the statistics

Pr(c) and CAR(t|c). Without loss of generality, we assume the

frequency of worker contexts is uniformly distributed. The data

set includes 2048 exact contexts and 10000 different tasks. The

detailed contexts can be generalized at four different levels. There

are 512 level-1 generalized contexts denoted as “G1”, 128 level-

2 generalized contexts denoted as “G2”, 8 level-3 generalized

contexts denoted as “G3”, and 2 level-4 generalized contexts

denoted as “G4”. The statistic CAR(t|c) is generated in a way

0

5

10

1
2

3
4

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Number of tasks

Level of generalization

A
v
er

ag
e 

re
v
en

u
e

Fig. 8. Trade-offs among privacy (generalization level), utility (average
revenue), and efficiency (number of tasks) in Problem (3).
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Fig. 9. Performance of our approximation Algorithm 1.

such that the closer two exact contexts are, the more similar the

distributions of CAR(t|c) would be. The CAR(t|c) of a task t
for workers with the same exact context c follows a uniform

distribution. The payments of tasks are set as a random value

between 0 and 10, and the ratio of commission α is chosen to be

0.1.

Firstly, we test the effectiveness of the task recommenda-

tion model. To this end, we compare our proposed algorithm

(Algorithm 1) with two baseline algorithms, “baseline1” and

“baseline2”. The first baseline algorithm uses the exact worker

context as the input. With the exact worker context, the algorithm

directly chooses the task that maximizes the revenue gained by the

MC platform. worker privacy is compromised in this algorithm

to trade for utility and efficiency. On the contrary, in the second

baseline algorithm, no context information is used, and therefore

worker privacy is maximized. This algorithm does not consider

the difference of worker contexts and recommends tasks that have

highest payments.

Fig. 7 shows the expected revenue of the MC platform by
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Fig. 11. Effect of number of workers M and privacy budget ǫ on the
accuracy of statistics.

adjusting the size of the recommended task set L. We run

the experiments using six different algorithms, including two

baseline algorithms and Algorithm 1 with four different levels

of generalized contexts. Intuitively, the two baseline algorithms

serve as a upper bound and a lower bound of other algorithms,

respectively, which is clearly shown in the figure. The expected

revenue of Algorithm 1 increases when more context information

is used. For a specific level of generalization, the expected revenue

increases with L. For example, when the generalization level is 3
(which corresponds to “G3” in the figure), the revenue increases

from 0.986 to 0.991 as L increases from 2 to 10. Note that the

performances of the two baseline algorithms do not change with

L because they always select the task that maximizes the expected

revenue regardless of L.

Fig. 8 illustrates the trade-offs among utility, efficiency and

privacy. We can observe that the deficiency in privacy can be com-

pensated by increasing the size of the recommendation set L. This

aligns with the fact that with a larger L, a worker receives more

tasks and is more likely to get a suitable task. Moreover, when

L is large, there are already enough tasks in the recommendation

set. Thus, the marginal improvement in revenue becomes smaller,

which means that increasing L would not improve the utility much

after L approaches a reasonably large number. We can also see

the impact of varying privacy levels on the expected revenue.

It is expected that as the requirement for privacy increases, the

difference of revenue obtained by using the exact context and

generalized context would increase, which can be observed from

the figure. Since the differences are always within a small range,

we conclude that the expected revenue of our privacy-preserving

approach is close to that of the privacy-oblivious one.

Secondly, we evaluate the performance of the proposed ap-

proximation algorithms. Due to the NP-hardness of the original

optimization problem, the optimal solution becomes intractable

in practice when either L or the task space is large. Therefore,

we use a reduced size of data set for this experiment (i.e., 100
tasks and L = 1, 2, 3). Fig. 9 compares the performances of

Algorithm 1 and the optimal algorithm. We see that there is

little difference between the two algorithms for L = 1, 2, 3 and

|T | = 100. The difference between the two algorithms may grow

as L becomes larger, but we have proved in previous sections

that our approximation algorithm has an approximation ratio of

1− 1/e.

Thirdly, we show the performance of Algorithm 2, which

jointly optimizes utility and efficiency. Fig. 10 plots the weighted

sum of utility and efficiency with the weight coefficient λ ranging

from 0.005 to 0.1. For each λ, the x-axis represents the level of

context generalization, and the y-axis represents the the weighted

sum of utility and efficiency. Same as what we get from Fig. 7, the

weighted sum decreases as the level of generalization increases,

which shows a clear trade-off between utility and privacy. With

the increase of λ, the optimized weighted sum decreases. This

is reasonable because it is shown in (4) that for the same list of

recommended tasks, the weighted sum decreases with the increase

of λ. As a result, the optimal weighted sum is expected to decrease

as well.

Lastly, we analyze the privacy and accuracy of the statistics

collection component. Since noise needs to be added to provide

(ǫ, δ)-differential privacy, the privacy is achieved at the cost of

accuracy. We illustrate the trade-off between the privacy parameter

ǫ and the accuracy of the statistics in Fig. 11. We can see from

the figure that, with the increase of the total number of queried

workers M , higher accuracy is obtained. To achieve an acceptable

accuracy of, for example, 0.8, the value of ǫ should be within the

range of (0.1, 1) for most M . We need to keep such a trade-off

between accuracy and privacy in mind when we choose the privacy

parameter ǫ.

7 SYSTEM OVERHEAD

In this section, we analyze the system overhead of the pro-

posed framework, including both task selection and statistics

collection components.

We list the estimated running time for the task selection

component in Table 1. Since the time for the optimal algorithm

grows exponentially as L grows, we only run this algorithm at

L = 2 or 3 with a small dataset where the number of tasks is

100. We can see that the time to get an optimal solution grows

rapidly with L, while the time for the proposed greedy algorithm

is linear with respect to L. Fig. 12 further illustrates the running

time for Algorithm 1. Obviously, the running time depends on

both the size of recommendation set L and the level of context

generalization. Each line in the figure represents a level of context

generalization. We can clearly see that for a fixed level of context

generalization, the running time increases almost linearly with
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TABLE 1
Running time (in unit of seconds) of recommending L tasks from a set of 100 tasks (L = 2 or 3)

L
G1 G2 G3 G4

Optimal Greedy Optimal Greedy Optimal Greedy Optimal Greedy

2 13.0 8.1 13.3 2.0 14.0 0.1 24.9 0.04

3 1125.2 15.7 1267.4 3.8 1275.6 0.3 1838.1 0.1
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Fig. 12. Running time of recommending tasks for Algorithm 1.

respect to L, which is important for practical systems. In fact, we

can also infer from the figure that the running time also increases

linearly with respect to the size of generalized contexts (the sizes

of generalized contexts for “G1”, “G2”, “G3”, and “G4” are 512,

128, 8, and 2, respectively).

In the following, we analyze the computation, storage and

communication overhead for statistics collection. Firstly, we ana-

lyze the computation overhead for the GM cryptosystem. With a

1024-bit key length, a smartphone running Android 2.2 with 1GHz

processor can execute more than 800 encryptions within one

second [27]. Since workers only need to execute the encryption

process once for each query request, the computation cost is neg-

ligible for them. The proxy is implemented with Apache Tomcat

6.0.33, which can execute more than 15, 000 GM encryptions,

or 123, 000 homomorphic XORs per second, and the server is

implemented with Java source code, which can execute more

than 6000 GM decryptions per second. Consider a normal setting

where there are 5000 workers with 100 different exact contexts

which generalize to the same generalized context, and there are

90 tasks relevant to this generalized context. Suppose 10% of the

workers participate in the statistics collection process, the proxy

needs to execute 18 encryptions and 18 homomorphic XORs for

a single statistic query when the privacy parameter ǫ is set to 5
according to (12). In order to calculate all the statistics needed for

the task selection model, the proxy needs to execute 18 × 27200
encryptions and 18 × 27200 homomorphic XORs, which takes

31 seconds and 4 seconds, respectively. For the same setting, the

server needs to decrypt a total of (500 + 18) × 27200 coins,

which takes 36 minutes. Note that the statistics can be calculated

offline and are reusable among workers with similar contexts. By

contrast, if the protocol is implemented with the Paillier system, in

order to calculate statistics for a task selection model, it takes the

mobile worker, the proxy, and the server 4 seconds, 139 minutes,

and 4500 minutes, respectively. Therefore, the GM crytosystem

use in our framework is highly efficient.

Next, we discuss the storage and communication bandwidth

requirements. Since a worker transmits no more than 3 coins

for each statistics collection query and a periodically generated

coin for noise addition, the storage requirement for him is in the

order of kB. Considering that workers can selectly respond to

the requests, the storage overhead is quite acceptable. Suppose

the coins should be sent out within one second, the bandwidth

requirement would be around 1 kB/s. As for the proxy, since it

needs to store all queried coins and noise coins before sending

them to the server, which is about 518×27200 coins in total in the

above setting, the storage overhead would be about 1.7 GB. Since

the statistics collection process are computed beforehand, we

assume the maximum transmission time is 30 minutes. Therefore,

the bandwidth for sending these data is 1 MB/s. Note that although

the storage requirement for computing a statistic is not small, in

practice, the statistic only needs to be computed once and updated

at a low frequency after it has been calculated. The overheads

for the proxy to update the statistics are at the same order of the

overhead for workers.

8 RELATED WORK

In this section, we review some works related to our problem

in the literature.

Privacy issues in mobile applications. Previous works on

privacy issues of mobile applications mainly focus on location

privacy in location-based services, and they use either obfuscation

to hide true locations [36], [37] or aggregation to hide individual

sensitive information [38]. However, none of them discuss how to

recommend tasks in the absence of accurate private information. In

this paper, we consider the fundamental trade-offs among privacy,

utility, and efficiency, and provides a flexible framework to select

tasks at different trade-off points.

Privacy issues in statistics computation. There are multiple

approaches addressing privacy issues in statistics computation

such as k-anonymity and ℓ-diversity. k-anonymity [39] ensures

that each individual is indistinguishable from at least k − 1 other

individuals, and thus cannot be uniquely identified. ℓ-diversity [40]

requires that there are at least ℓ well-represented values for every

sensitive attribute. However, these two privacy notions can only

guarantee syntactic properties of the released data, and cannot

protect against an adversary with certain background knowledge.

On the other hand, differential privacy [41] makes no assumption

of the adversary and is a very strong guarantee. However, the

traditional notation of differential privacy is designed for central-

ized databases and cannot be directly used in a distributed setting.

There are a few approaches which have been proposed to provide

differential privacy over distributed data [17]–[20], but they are

impractical for a large-scale setting. For example, the computation

cost per user in [18] is O(M) where M is the number of users,
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which becomes prohibitive for a large population of users. The

computation cost is reduced to O(1) in [19], [20], but they use

an expensive secret sharing protocol that is not scalable to a

large group of workers. Additionally, the solution in [21] uses

two servers to collaboratively calculate statistics and handle user

dynamics. However, a single malicious user could greatly distort

the querying result in this approach. Our approach provides a

practical solution to compute differentially-private statistics over

distributed data that are both scalable and robust against malicious

workers.

Task assignment in crowdsourcing. There are a few works in

task recommendation for web-based crowdsourcing applications.

Ho and Vaughan [42] address the scenario where heterogeneous

tasks are assigned to workers with unknown skill sets with an

exploration-exploitation trade-off. Yuen et al. [43] utilize perfor-

mance history and task search history to model user preference

and recommend tasks for a user based on his/her preference.

Ambati et al. [44] implicitly model user skills and interests, and

recommend tasks based on user preference. However, these works

have not addressed the specific privacy concerns in MC scenarios

where tasks should be recommended to workers based on private,

sensitive information.

9 CONCLUSION

We have considered the privacy issues in task recommendation

for mobile crowdsourcing. We have proposed a task recommenda-

tion framework which recommends mobile crowdsourcing tasks

without violating worker privacy. The proposed framework is

comprised of two components: task selection component and

statistics collection component. In the task selection component,

we have developed a privacy-aware optimization model of task

selection that considers the intrinsic trade-offs among utility,

privacy and efficiency and selects tasks based on the limited

information of worker context. workers have the choice of how

much private information they are willing to share with the

server. In the statistics collection component, we have proposed

a protocol that gathers necessary statistics about worker con-

texts while guaranteeing differential privacy. We have evaluated

the effectiveness and efficiency of the proposed framework and

analyzed the system overhead. For future work, we intend to

incorporate other popular task recommendation algorithms such

as collaborative filtering. We also plan to jointly consider task

assignment and task recommendation problems in MC systems.
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